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Overview 

The test design for PISA 2022 follows the balanced incomplete block (BIB) design used in prior cycles, 

with adaptations to incorporate multi-stage adaptive testing (MSAT) for the reading and mathematics 

domains. With the traditional BIB design, units (i.e., small sets of items) are grouped into mutually exclusive 

clusters (i.e., sets of units) assembled into test forms. For the non-adaptive domains, the clusters are 

distributed so that they appear with equal frequency across forms and positions within forms, which leads 

to the design being balanced. When these tests are administered, students are administered a randomly 

selected test form so that differences in the average test performance on forms consisting of different sets 

of items are not due to differences in student proficiency. However, the test forms can be of different 

difficulty, which means that the performance of groups measured through different sets of items cannot 

be directly compared using total-score statistics such as the average number or percent of items that the 

student responded to correctly. 

The limitations of using the number or percent of items correct to score assessments that are designed 

with BIB or administered through MSAT can be overcome by modelling the item responses through item 

response theory (IRT). When students respond to a set of items in a common subject or domain, 

their response patterns should show regularities that can be modelled using the underlying commonalities 

among the items. This regularity can be used to characterize the students and items on a common scale, 

even when students take different sets of items. However, IRT is only the first step in the scaling of PISA 

data that makes it possible to describe the distributions of student performance in populations or 

subpopulations, to estimate the relationships between proficiency and background variables, and to build 

and select test forms that match the difficulty of the form with the ability of students. 

The scaling approach employed in the analyses of PISA data (population modelling) combines IRT and 

latent regression modelling to increase overall measurement accuracy and to avoid potential bias in the 

estimation of the relationships between proficiency and contextual variables from the background questionnaire 

(BQ). Once the population model is estimated, multiple plausible values can be drawn for each student 

from a posterior distribution of proficiency that accounts for the sources of uncertainty in the data. 

In PISA 2022, mathematics and reading MSAT designs were incorporated into the overall BIB design to 

deliver a 60-minute MSAT to students, instead of the two 30-minute clusters used for the other domains. 

The reading design was the same that was used in 2018. However, as reading became a minor domain, 

some of the items were released and the 2018 testlets that lost some items were re-assembled from the 

reduced item pool in a way that minimized the changes. As in 2018, the reading design included a 

proportion of student misrouted from the core to stage and from stage 1 to stage 2 to ensure that responses 

on all items were collected from students across a broad proficiency range. The reading design partially 

balanced item position between stage 1 and stage 2. For mathematics, a newer design was implemented 

that fully balanced item position across core, stage 1 and stage 2 and randomly assigned 25% of the 

students to a linear design to ensure that item responses are collected from students across a broad 

proficiency range (for further details, see Chapter 2 in this report). 

11 Scaling PISA data 
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However, despite these design differences across domains, for the most part, the same classical analysis 

(item analysis - IA and timing), item response theory (IRT) and population modelling procedures could and 

were effectively implemented to fulfil all the main survey analyses goals. 

This chapter first describes the quantity and quality of the data submitted by the participating 

countries/economies. Analyses were conducted to evaluate how well the assessment design was reflected 

in the data and to verify that the data quality was appropriate for IRT and population modelling. The 

subsequent sections explain the models and methods used for IRT, latent regression modelling, and the 

generation of plausible values. Then, the application of these models and methods to the PISA 2022 data 

to produce the national and international item parameters and the plausible values are described. Finally, 

the approach and methods used for estimating the linking errors between the 2022 main survey and the 

previous PISA cycles are explained. 

Data yield and data quality 

Before the data were used for scaling and population modelling, analyses were carried out to examine the 

quality of the data to ensure that the test design requirements were met, and also to verify that the data 

reflected the intended design. The following subsections give an overview of these analyses and their 

results. Overall, the quality of the data and the cognitive instruments met the requirements for the intended 

analyses and scaling methods. The results of the item analyses were communicated to 

countries/economies for their review and feedback. Taken together, the data yield and item analyses 

confirmed that the PISA 2022 computer platform had successfully delivered, captured, and exported the 

student- and item-level data expected from both the computer-based assessment (CBA) and paper-based 

assessment (PBA). 

Target sample size, routing, and data yield 

Target sample size 

The assessment design for the PISA 2022 main survey included the core domains of reading, 

mathematics, and science, delivered through both CBA and PBA. In addition, it also included the optional 

domain of financial literacy and the innovative domain of creative thinking, both delivered only through 

CBA. As part of the sampling design, participating countries/economies were required to sample 

a minimum of 150 schools to cover their national population of 15-year-old students. Countries/economies 

taking the CBA with creative thinking (CrT) or the CBA without CrT needed to sample 42 students from 

each of the 150 schools for a total sample of 6,300 students, while countries/economies taking the PBA 

needed to sample 35 students from each of the 150 schools for a total sample of 5,250 students. CBA 

countries/economies taking the financial literacy domain were also required to sample more schools and/or 

more students per school to obtain an additional sample of 1,650 students, resulting in a total sample of 

7,950 students. This group of 1,650 students who took the financial literacy sample was randomly 

equivalent to, albeit different from, the “main sample” students who did not take financial literacy. 

With mathematics as the major domain, one hour of mathematics was administered to most of the students 

in the main sample (i.e., 96% with CrT and 94% without CrT), and the other domains were only 

administered to a subset of students. 

Data yield 

Table 11.1 shows the assessment languages and the sample sizes for each of the participating 

countries/economies. For a student to be considered a “respondent” for PISA, the student needed to meet 

at least one of the following two criteria: 1) answered more than half of the cognitive items from the 
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assigned form/booklet, or 2) answered at least one cognitive item and at least one item regarding home 

possessions (i.e., ST251 or ST255). 

Figure 11.1, Figure 11.2, and Figure 11.3 show the extent to which each country/economy participating in 

the CBA, the financial literacy assessment, and the PBA met or exceeded the sample size requirements. 

In each figure, the red horizontal line indicates the sample-size requirements for each design option. Some 

countries/economies exceeded the requirements because they oversampled certain regions and/or 

minority languages. As expected, a few countries/economies did not reach the sample size requirements 

because of their small total population size. Because of on-going post-Covid challenges, 

26 countries/economies did not reach their sample-size target. Nevertheless, most of them managed to 

get very close, and all collected enough data to contribute to the international scaling and to produce high-

quality population modelling outcomes that are comparable to those of all other participating 

countries/economies. 

Figure 11.1. Main sample yield for countries/economies participating in the CBA 

 
Note: Ukranian regions (18 out of 27) administered the assessment. 

Figure 11.2. Financial literacy sample yield for participating countries/economies 
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Note: 'Canadian provinces' refer to the seven provinces of Canada that participated in the PISA 2022 financial literacy assessment: British Columbia, Manitoba, 
New Brunswick, Newfoundland and Labrador, Nova Scotia, Ontario and Prince Edward Island. It is not a nationally-representative sample. 'Flemish community 
(Belgium)' refers to the Flemish-speaking population of Belgium. It is not a nationally-representative sample. 

Figure 11.3. Main sample yield for countries/economies participating in the PBA and new PBA 
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Near uniform proportions of the total number of alternatives were observed that confirmed the random 

assignments to the routing testlets, the alternate MSATs (Groups A, B and C in mathematics and Designs 

A and B in reading1), and the mathematics adaptive and linear paths. 

The adaptive routing through the mathematics and reading designs are summarized in Figure 11.4a and 

Figure 11.4b, showing the proportion of students in each country/economy who were routed to difficult, 

medium or easy testlet combinations such as: hard testlets in both Stage 1 and Stage 2 in mathematics or 

reading (HH); or low and medium or hard and medium testlet combinations in mathematics (LM or HM), or 

low and hard or hard and low difficulty testlets combinations in reading (LH or HL); or low difficulty testlets 

in both Stage 1 and Stage 2 in mathematics or reading (LL). Students’ paths were categorized as 

missing/undetermined when they did not complete the routing stage or stage 1 and their full path could not 

be determined by the adaptive algorithm. Note that the 25% of students who were assigned to non-adaptive 

paths in the hybrid MSAT design are not included in Figure 11.4a. 

In both figures, the lowest to highest performing countries/economies are shown from left to right. As 

intended by design, in the lower-performing countries/economies, a smaller proportion of students were 

assigned to the most difficult testlets, while in the higher-performing countries/economies, a smaller 

proportion of students were assigned to the easiest testlets. Also, as intended, every type of testlet was 

assigned to a high enough proportion of the total sample in each country/economy in each stage, 

regardless of the proficiency distribution in the country/economy. For reading this was achieved through 

the misrouting of some students, while for mathematics this was achieved by randomly assigning 25% of 

students to non-adaptive paths of the hybrid MSAT design. Altogether the observed results confirmed that 

the MSAT delivery platform worked as intended, and that regardless of the countries/economies’ 

proficiency distributions, the adaptive design always provided the minimum number of responses per item 

needed for IRT scaling and an appropriate item coverage across the full range of student proficiency. 

Figure 11.4a. Proportion of students routed to each testlet combination in mathematics MSAT 

Refer to Chapter_11_Figures.xlsx to view this figure on line. 

Figure 11.4b. Proportion of students routed to each testlet combination in reading MSAT 

Refer to Chapter_11_Figures.xlsx to view this figure on line. 

Classical test theory statistics: Item analysis 

Classical item analyses (IA) were conducted on all paper-based and computer-based test items at the 

national and international levels to verify that the items functioned appropriately. Unexpected results were 

identified and explored for any indication of possible issues related to data collection, human- or machine-

scoring, or other issues. Descriptive statistics for the observed responses and various missing response 

codes were provided to countries/economies and the OECD for their review and feedback. Classical item 

analysis also provided additional descriptive information useful for the review of the IRT modelling 

outcomes. 

The following statistics were computed: 

• item response category statistics, including frequency and criterion score mean, standard 

deviation, and biserial correlation 

• (classical) item difficulty 

• (classical) item discrimination 

Item response categories included several types of non-response and item score categories. An item 

response was recoded as not-reached when a student did not answer the item or any subsequent item in 
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the cluster for non-adaptive domains (science, financial literacy, and creative thinking) or in the MSAT 

sessions for reading and mathematics. An item response that did not perform properly in the field or had 

a missing human-coded response code was also converted to not-reached. An item response was recoded 

as omitted when a student did not answer the item but answered one or more of the subsequent items in 

the cluster or the MSAT path. The category off-task was used to identify an invalid missing category when 

a student did not answer the question in the expected way (e.g., by giving a response not associated with 

the item or responding with more than one answer in an exclusive choice question). In the computation of 

the item statistics and in the scaling analyses, the not-reached responses were excluded (i.e., treated as 

missing/ not-administered), but the omitted and off-task responses were treated as incorrect. 

The mean score, standard deviation, biserial/polyserial correlation, and point biserial/polyserial correlation 

were based on the total block/cluster score where the item appeared. 

Statistics for trend items were compared with results from prior PISA cycles. Also, statistics were compiled 

separately for the PBA and CBA and were examined at the aggregate level across countries/economies. 

Analyses were also performed separately for each country/economy to identify outlier items that worked 

poorly or differently across assessment cycles and/or across countries/economies and to detect flaws or 

obvious scoring rule deviations. Analyses were also conducted by language within each country/economy. 

UH booklet results were provided for countries/economies, where applicable. 

Table 11.2 and Table 11.3 show examples of the item analysis outputs. Table 11.2 shows the IAs of the 

first three items in block/cluster M01 of one country/economy. The first item, DM033Q01C, is the scored 

version of the paper-based item PM033Q01 (the corresponding CBA item is CM033Q01), a multiple-choice 

item. Each section of the table represents one item, and the columns represent the different response 

categories. The total column includes the summary information for all categories, excluding the not-

reached (NOT RCH) category. The last row (RSP WT) shows the scores associated with each response 

category and the maximum score that can be obtained on the item. 

The biserial (R BIS) statistic is used to describe the relationship between performance on a single test item 

and a criterion (usually the total score on the test). It is estimated using the polyserial method which is a 

generalized form of the correlation between the criterion (which is treated as a continuous variable) and 

the item score, where the item score is either 0, 1 (for dichotomous items) or 0, 1, 2, 3,…, k (for polytomous 

items). 

The delta statistic is an index of item difficulty based on P+ (proportion correct, or percent correct when 

expressed as a percentage) which has been transformed so that it is on a scale with a mean of 13.0 and 

a standard deviation of 4.0. Delta statistics ordinarily range from 6.0 for a very easy item (approximately 

95% correct) to 20.0 for a very difficult item (approximately 5% correct), with a delta of 13.0 corresponding 

to 50% correct. 

Table 11.3 has two parts. The first part shows a breakdown of the score categories and biserial correlations 

by category. The second part contains summary data for each item and reveals items that were flagged 

for surpassing certain thresholds. The thresholds are provided in Table 11.4. In this example, the third item 

is flagged for having an omit rate of greater than 10%. 

Response time analyses 

The computer-based platform captured response time data for all computer-based items delivered in the 

CBA countries/economies in both the field trial and main survey. Timing data can be informative 

in evaluating the level of student engagement and effort over the two-hour testing period. Very little time 

spent on the assessment was interpreted as low effort, while too much time spent on the assessment (or 

parts of the assessment) could be an indication of technical problems or low ability. Response time 

information was aggregated by testlet, cluster, domain, and for the full assessment. Item response times 

by position and proficiency level were also computed. Overall, results indicate that the CBA data provided 
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valid information that can be used to model items and estimate student performance within and across 

countries/economies. 

Outliers 

Students were generally expected to complete the cognitive assessment within two one-hour periods 

separated by a break. Within each hour, students followed the prescribed order of clusters or MSAT testlets 

and units at their own pace. Except for the CBA reading and mathematics assessments, students were 

expected to complete two 30-minute clusters within an hour, regardless of the positions within the 

assessment (e.g., clusters 1 and 2 in the first hour, clusters 3 and 4 in the second hour). Within each hour, 

students were allowed to manage their time between the two assigned clusters. For reading, students were 

expected to complete the reading fluency items within a 3-minute limit and three self-paced MSAT routing, 

stage 1 and stage 2 testlets (i.e., testlet 1, 2 and 3) within the remaining time in the hour. For mathematics, 

students were expected to complete three self-paced MSAT or linear testlets within the hour. 

Focusing on larger-than-expected cluster or testlet response times, outliers were identified using the 

median absolute deviation (MAD) approach (Leys et al., 2013[1]; Rousseeuw and Croux, 1993[2]). That is, 

response times greater than median{xi} + 4.4478*median{|xi − median(xj)|}, where {xi} is the collection of all 

sample values and |∙| denotes their absolute value, were identified as outliers. Note that in this calculation, 

median values were identified using international data, not country/economy-level data. This way, the 

same criterion was used across countries/economies, and the identification of outliers was more stable. 

Table 11.5 shows the percentages of response time outliers by domain. The proportions of outliers were 

small—between 0.5% to 1.2% across all domains. Note that, because reading fluency was very short and 

strictly time-limited, an outlier analysis was not needed. 

Cluster- or testlet-level response time 

Table 11.6a presents descriptive statistics for testlet or cluster response times for all CBA domains, 

excluding reading fluency. These values are the sum of the time each student spent on each item in a 

testlet or cluster, aggregated across students, countries/economies, and positions. Similarly, 

Table 11.6b presents descriptive statistics for domain time, computed as the aggregated item time. 

These results show that most students spent a reasonable amount of time on each cluster (with most 

taking more than 13 minutes and less 30 minutes, approximately from the first (Q1) to the third quartiles 

(Q3)) or on each testlet (more than 13 minutes and less 30 minutes, approximately Q1 and Q3) or each 

testlet (more than 6 minutes and less than 22 minutes, approximately Q1 and Q3). However, as sample 

maximum (MAX) values show that some students did take a large amount of time to complete a given 30-

minute cluster, thus and having very little time to finish the subsequent cluster with which it was paired. 

Similarly, for mathematics and reading, values show that some students did take a large amount of time 

to complete the first or the first two testlets and have little time for the subsequent(s) one(s). It is also 

notable that the last mathematics and reading testlets generally took less time than the other testlets. 

Total domain time was also appropriate in all domains, with most students spending more than 30 minutes 

(Q1) and less than 54 minutes (Q3). Overall, the time spent in each domain was quite similar, although 

science and financial has larger Q3 and MAX values. Also, a desired confirmation was that there was no 

evidence of a timing mode effect between the linear and MSAT groups in mathematics and between design 

A and B in reading. 

Response time and student performance 

The relationship between response time and student performance was examined using the median of the 

cluster-level response time and proficiency levels. The proficiency levels were computed based on the first 

plausible value (PV1) and a detailed description of their interpretation and cut-offs can be found in 

Chapter 17. Tables 11.7a – 11.7d show a very similar pattern across all domains and MSAT designs, 

where from Below Level 1 and up to Level 4, more able students generally spent more time completing 
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each domain. The increase in time spent was most noticeable between students below Level 1 and up to 

Level 3; then, time spent tapered off up to Level 5 and slightly decreased at Level 6. Again, there was very 

little difference between the linear and MSAT mathematics tests, except at Levels 5 and 6 where the MSAT 

students spent about one to two minutes more in median time than the linear students. 

While the more proficient students generally took more time to complete the test, median time and median 

performance varied noticeably across countries/economies. However, as Figure 11.5 shows for 

mathematics, while countries/economies do vary noticeably in their median PV1 proficiency, there was no 

clear relationship between median proficiency and median total item response time across at the 

country/economy level. For example, KOR and SGP, both have high median mathematics scores, but 

SGP's median response time is close to the overall median response time, while KOR's is well below it. 

Figure 11.5. Mathematics median response time by median proficiency across 

countries/economies 
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Note: Statistics were calculated only with students who had timing data, excluding UH students. For Israel, Utra Orthodox students were excluded. 

Because of differences in proficiency and other factors, the time it takes students to complete the 

assessment is expected to vary within each country/economy. This is shown in Figure 11.6 which presents 

the distribution of the total time spent on the mathematics items for all countries/economies, sorted by the 

median response time. Note that in a few cases the 90th percentile time was above 60 minutes allocated. 

This was because the time limit was not strictly enforced to allow for students to finish tasks they were in 

the middle of. 

Figure 11.6. Distribution of mathematics response time in each country/economy 

 

Note: For each country/economy, the solid black line in the middle shows the median total response time, the dark blue horizontal bars range 

from the 25th to the 75th percentiles, and the light blue horizontal bars range from the 10th to the 90th percentile. Countries/economies are 

sorted by their median MSAT response time. For Israel, Utra Orthodox students were excluded. 
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Korea

Netherlands
Montenegro

Cyprus
Kosovo
Albania

Total response time for reading MSAT items (in minutes)
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Item-level response time 

Response time and the relationship between response time and performance were also explored at the 

item level. Figure 11.7 and Figure 11.8 show the median item-level response time (aggregated across all 

countries/economies) for the trend and new mathematics items, respectively, disaggregated by students’ 

proficiency levels based on PV1. For most but not all items, as we have seen above with the total domain 

time, low-performing students (blue and red lines) had similar and relatively short response times, while 

high-performing students (green and purple lines) had longer response times and larger variability in the 

response times. This pattern was consistently observed for both the trend and new mathematics items. 

Furthermore, there are some clear peaks indicating items on which high-performing students spend 

substantial more time than low-performing students. 

Figure 11.7. Median item response time by proficiency level for mathematics trend items 

Refer to Chapter_11_Figures.xlsx to view this figure online. 

Figure 11.8. Median item response time by proficiency level for mathematics new items 

Refer to Chapter_11_Figures.xlsx to view this figure online. 

For the creative thinking items, median item response times are shown in Figure 11.9, for each 

country/economy. A similar approach was employed but levels were calculated using the first non-linear 

score transformed value instead of PV1. More detail on the CrT scores and their levels can be found in 

Chapter 18. As expected, since items were typically more demanding and fewer of them were 

administered, students generally spent more time per item than for the other domains. Across 

countries/economies, the amount of time spent per item varied, however, the timing patterns across items 

were similar. 

Figure 11.9. Median item response times for creative thinking items 

Refer to Chapter_11_Figures.xlsx to view this figure online. 

 

Response time reflecting possible motivation or administration issues 

On average, students completed the entire test in 83.34 minutes (excluding a short break between the two 

assessment hours), with a standard deviation of 21.74 and a median of 87.46 minutes. Some students 

completed the test in less than 30 minutes (found in all countries/economies, 2.7% of the overall sample), 

while some students took longer than 120 minutes to complete the test (1.5% of the overall sample). At 

the country/economy-level, students in Kazakhstan, Peru, Mongolia, and Macao took the longest time 

to complete the entire test, with a median time of 100.8, 99.0, 99.0 and 98.9 minutes, respectively. 

Students in Cyprus, Albania, and Kosovo took the shortest time to complete the test, with a median time 

of 67.2, 67.7 and 69.5 minutes, respectively. 

There were five countries/economies where 5% or more of the students exceeded the time limit: United 

Arab Emirates (11.9%), Indonesia (9.9%), Colombia (7.6%), Mongolia (5.7%) and Saudi Arabia (5.4%). 

This could be explained by students in these countries generally spending more time to complete the test 

and by the fact that time limits were not strictly enforced so that students in the middle of a task could finish 

without being abruptly cut-off. Apart from these countries/economies, only a small proportion of 

respondents in each country/economy had very long or short total response times, indicating that there 

were no systematic administration and/or motivation issues. Furthermore, students with these extreme 

response times appeared to be randomly distributed across schools and countries/economies. 
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Position effects 

According to the PISA test design, each student takes one of many alternative test forms made up of 

different clusters/testlets in different positions. For example, a student may take two science clusters in the 

first hour and then take three mathematics testlets in the second hour, while another student may take the 

same domains, but in the reverse order. Item position effects are a concern in large-scale assessments 

because substantial position effects, if present, would increase measurement error and may introduce bias 

in parameter estimation. To mitigate any potential item position effects, as in previous cycles, the 

PISA 2022 main survey design balanced the order of the domains (between the first and second hour) as 

well as the order of the clusters or testlets within each domain (see Figure 2.5 in Chapter 2 for the full form 

design used in PISA 2022). Thus, PBA and CBA clusters and items within them (in fixed position) appeared 

in the first hour in positions 1 and 2 and in the second hour in positions 3 and 4. The CBA testlets for 

mathematics appeared in the first hour in positions 1, 2, and 3, and in the second hour in positions 4, 5, 

and 6. The exception was reading, where the MSAT design was partially balanced with the core testlets 

appearing in positions 1 and 4 and the stage 1 and stage 2 testlets each appearing in positions 2, 3, 5, 

and 6. 

As prior PISA cycle results have indicated, the PISA 2022 results summarized below show that position 

effects are significant and justify the use of the complex BIB and balanced MSAT designs implemented to 

minimize their impact. 

To evaluate and confirm that the impact of item positions studied in the field trial was minimal in the PISA 

2022 main survey, position effects were examined in terms of: 1) proportion of correct responses, 

2) median response time, and 3) rate of omitted responses. For PBA and CBA domains, cluster-level 

statistics are reported for positions 1, 2, 3, and 4, and position effects are reported as the difference 

between positions 4 and 1. For the mathematics and reading MSATs, domain-level statistics were reported 

for the 1st hour and the 2nd hour2 and the position effects are reported by the difference between hour 2 

and hour 1. 

Table 11.8a and Table 11.8b present the position effects in terms of the median response time3 averaged 

by cluster position and by assessment hour, respectively. For all domains, students spent more time on a 

cluster when presented in position 1 than in position 4. Financial literacy items had a noticeably higher 

median response time when in cluster position 1, resulting in a larger difference between the median 

response times for cluster positions 1 and 4. There were indications that some students spent much more 

time on clusters 1 and 3, leaving them with less time for clusters 2 and 4, respectively. Table 11.8b shows 

that the position effects by hour were generally smaller than the position effects by cluster. Across domains, 

students spent between 3.54 to 6.92 minutes less in median response time in the second hour. For 

mathematics, positions effects appear nearly identical between the linear and MSAT part of the hybrid 

design. For reading, the response-time position effect is larger for the core than the first and second stages. 

Table 11.9a and Table 11.9b present the position effects in terms of the average P+, averaged by cluster 

position and by assessment hour, respectively. By cluster, the decreases in P+ between position 1 and 4 

ranged from 0.051 in creative thinking to 0.89 in financial literacy. Overall, cluster position effects were 

similar to values observed in prior PISA cycles. By assessment hour (Table 11.8b), for all non-adaptive 

domains, a smaller decrease in P+ between the 1st and 2nd assessment hour was observed compared to 

the decrease in P+ between the 1st and 4th cluster position. For the mathematics linear and adaptive MSAT 

trend and new items, the decrease in average P+ between the 1st and 2nd hour were all relatively small 

and similar to the decreases observed in the other domains. 

The proportions of omitted responses at different positions for all CBA countries/economies were analysed 

to further examine the quality of data affected by position. The proportion of omitted responses are shown 

by cluster position and assessment hour in Table 11.10a and Table 11.10b, respectively. These do not 

include the ‘not-reached’ items. Note that the proportion of omitted responses for reading fluency are 0 
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because students had to respond to each item presented (i.e., they were not able to skip the item). Overall, 

the omission rates by cluster and by hour were very similar across the domains. As in PISA 2018, the 

omission rates for all domains in all positions were less than 0.10, and the omission rates in positions 2 and 

4 were higher than the rates in positions 1 and 3, respectively. 

Position effects were also reviewed for the new PBA forms. Table 11.11a and Table 11.11b report the 

average P+ and the average omission rates by cluster position. By comparison with the results from the 

PBA forms used in the prior cycles, the new PBA position effect were noticeably smaller: Position 4 – 

Position 1 decrease in P+ by less than 0.04 (compared to less than 0.09) and Position 4 – Position 1 omits 

increased by less than 0.02 (compared to less than 0.05). 

IRT modelling and scaling 

The modelling and scaling of the PISA 2022 main survey data followed the general approach developed 

for PISA 2015 [OECD (2017[3]), Chapter 9]. The following sections describe the IRT models and their 

assumptions, as well as the IRT scaling approach used in PISA 2022. The scaling issues associated with 

the mathematics and reading MSAT designs and how they were resolved are addressed as well. 

IRT models and assumptions 

As in PISA 2015 and 2018, the unidimensional multiple-group IRT model (Bock and Zimowski, 1997[4]; von 

Davier and Yamamoto, 2004[5]) based on the two-parameter logistic model (2PLM) (Birnbaum, 1968[6]) for 

the binary item responses and the generalized partial credit model (GPCM) (Muraki, 1992[7]) for the 

polytomous item responses were used for each domain. The 2PLM is a generalization of the Rasch model 

(Rasch, 1960[8]), which assumes that the probability of a correct response to item i depends only on the 

difference between the student v’s trait level  and the difficulty of the item bi. In addition, the 2PLM 

postulates that for every item, the association between this difference and the response probability 

depends on an additional item discrimination parameter ai: 

Formula 11.1 

𝑃(𝑥𝑣𝑖 = 1|𝜃𝑣, 𝑏𝑖, 𝑎𝑖) =
𝑒𝑥𝑝⁡(𝐷𝑎𝑖(𝜃𝑣 − 𝑏𝑖))

1 + 𝑒𝑥𝑝⁡(𝐷𝑎𝑖(𝜃𝑣 − 𝑏𝑖))
. 

The probability of a positive response (e.g., solving an item correctly) is strictly monotonic, increasing with 

. The item discrimination parameter ai, usually scaled by a constant D = 1.7, characterizes how quickly 

the probability of solving the item approaches 1.00 with increasing trait level  when compared to other 

items. In other words, the model accounts for the possibility that responses to different items do not have 

the same weight with relation to the latent trait. The discrimination parameter ai describes how well a certain 

item relates to the latent trait and, therefore, discriminates between examinees with different trait levels 

compared to other items on the test. One important special case of the model is when 𝑎𝑖 = 1 for all items, 

in which case, the model is equivalent to a Rasch model. 

The GPCM (Muraki, 1992[7]), like the 2PLM, is a mathematical model for the probability that an individual 

will respond in a certain response category on a particular item. While the 2PLM is suitable for items with 

only two response categories (dichotomous items), the GPCM can be used with items with more than two 

response categories (polytomous items). The GPCM reduces to the 2PLM when applied to dichotomous 

responses. For an item i with mi + 1 ordered categories, the probability of obtaining a score of k (0, 1, 2,…, 

mi) under the GPCM can be written as: 
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Formula 11.2 

𝑃(𝑥𝑣𝑖 = 𝑘|𝜃𝑣 , 𝑏𝑖, 𝑎𝑖, 𝑑𝑖) =
𝑒𝑥𝑝{∑ 𝐷𝑎𝑖 ⁡(𝜃𝑣 − 𝑏𝑖 + 𝑑𝑖𝑟)

𝑘
𝑟=0 }

∑ 𝑒𝑥𝑝{∑ 𝐷𝑎𝑖 ⁡(𝜃𝑣 − 𝑏𝑖 + 𝑑𝑖𝑟)
𝑢
𝑟=0 }𝑚𝑖

𝑢=0

, 

where dir is the item-category threshold or step parameter as indicated in Appendix A), with ∑ 𝑑𝑖𝑟 = 0
𝑚𝑖
𝑟=1  

and 𝑑𝑖0 = 0.4 

Critical assumptions of most IRT models and the models used in PISA are conditional independence 

(sometimes referred to as local independence) and unidimensionality. Under conditional independence, 

item response probabilities depend only on the latent trait and the specified item parameters—there is no 

additional dependence on any demographic characteristics of the students, responses to any other items 

presented in a test, or the survey administration conditions. Under the unidimensionality assumption, a 

common single latent variable accounts for performance on the full set of items. With past PISA data, these 

assumptions have been verified and item parameters have been estimated for each cognitive domain 

separately through unidimensional IRT models. These assumptions need to be confirmed for each domain 

in which any new items are used. 

With these assumptions, we can formulate the following joint probability of a particular response pattern xv 

= (xv1,..., xvn) across a set of n items: 

Formula 11.3 

𝑃(𝒙𝑣|𝜃𝑣 , 𝜷) =∏𝑃(𝑥𝑣𝑖|𝜃𝑣 , 𝜷𝑖),

𝑛

𝑖=1

 

where 𝜷𝑖 is the vector of parameters for item i from the associated IRT model. When replacing the 

hypothetical response pattern with the scored observed data, the above function can be viewed as a 

likelihood function that is to be maximised with respect to the item parameters. To do this, it is assumed 

that students (indexed v=1, 2, …, N) provide their answers independently of one another and that the 

student’s proficiencies are sampled from a distribution 𝑓(𝜃). Using the sampling weights 𝑤𝑣, the likelihood 

function is, therefore, characterised as: 

Formula 11.4 

𝑃(𝑿|𝜷) =∏𝑤𝑣∫𝑃(𝒙𝑣|𝜃, 𝜷)𝑓(𝜃)𝑑𝜃.

𝑁

𝑣=1

 

Typically, the item parameters that provide the best possible fit to a given data set are estimated by 

maximising this function through a process called item calibration. The item parameters can then be used 

in the subsequent analyses, such as in the estimation of individual plausible values and population 

characteristics. However, it should be noted that IRT modelling does not provide an absolute scale, since 

any linear transformation of the item and latent trait parameters in the above formula leads to the exact 

same likelihood function, often referred to as scale indeterminacy or non-identifiability. Therefore, as part 

of the calibration process, a choice must be made for the IRT scale to be determined. 

For further information regarding the IRT models discussed, see Fischer and Molenaar (1995[9]), van der 

Linden and Hambleton (1997[10]; 2016[11]), or von Davier and Sinharay (2014[12]) for the use of these models 

in the context of international comparative assessments. 
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IRT item calibration and scaling 

The PISA data collection designs are complex, and the assessments are adapted and translated for each 

participating country/economy into one or more languages. To better account for potential cultural and 

language differences, and to optimally scale the item parameters and proficiency estimates across 

countries/economies and across modes (PBA and CBA), new calibration and scaling approaches were 

implemented in 2015. For each domain, a series of multi-group concurrent calibrations of the historical 

data (2015 and prior PISA cycles) were conducted (von Davier et al., 2019[13]) (OECD, 2017[3]), Chapter 9. 

As a result, all the items used in all the PISA cycles up to 2015 were estimated and scaled onto new 

common IRT scales (by domain) and new transformations from these IRT scales to the existing PISA 

reporting scale were established to preserved trend comparability. 

For the first run of the series of multi-group concurrent calibrations, the item parameters were constrained 

so that only one set of common or international parameters was estimated per item to model the data for 

all the country-by-language-by-cycle groups. As part of the calibration process, the fit of the common item 

parameters to the data for each pre-defined group was evaluated. Then, item-by-group interactions were 

identified when the fit to the data was found to be poor (i.e., the value of the item fit statistic, discussed 

below, was higher than a chosen threshold value). In the subsequent runs, new unique or group-specific 

item parameters were estimated in the group or groups in which misfit was found and the item fit threshold 

was gradually lowered until the ultimate target threshold was reached, thus allowing additional group-

specific item parameters to be estimated. The fundamental consideration of using this stepwise procedure 

is to optimize both the model data fit and the comparability across all groups—keeping common item 

parameters for as many groups as possible or minimizing the use of unique parameters. By allowing unique 

item parameters for items that show item-by-group interactions – in contrast to excluding such items 

or accepting poor common item parameter fit – the measurement error is reduced without introducing bias. 

The research base for this approach can be found in Meredith (1993[14]); Reise, Widaman and Pugh 

(1993[15]); Glas and Verhelst (1995[16]); Yamamoto (1997[17]); Glas and Jehangir (2014[18]); Meredith and 

Teresi (2006[19]); as well as Oliveri and von Davier (2011[20]; 2014[21]). 

Since PISA 2015, in 2018 and now in 2022, the same IRT calibration and scaling approach has been used 

to estimate new item parameters onto the existing IRT scales. However, the historical data no longer 

needed to be included in the scaling since all trend items (reused from 2015 and/or prior PISA cycles) had 

already been calibrated and scaled. Therefore, in PISA 2022, as in PISA 2018, a fixed item parameter 

linking approach was utilized with the trend item parameters fixed to their values established in the 2015 

and 2018 scaling in the first calibration run to start the estimation of international parameters for the new 

items. The subsequent runs, then proceeded in the same manner as described above to evaluate item-

by-country-by-language interactions (i.e., group-level item-fit) and to estimate unique parameters when 

needed. 

Group-level item-fit analyses are a critical part of the scaling analyses described above. Different types 

of differential item functioning (DIF) statistics can be used to evaluate the extent to which the IRT model 

applied to a group fits the response data collected from that group. In the context of the IRT models used 

in since PISA 2015, the extent to which the model-based item characteristic curve (ICC, computed using 

formula 11.1 or 11.2 for the 2PLM or the GPCM) and the empirical ICC can differ is evaluated based on the 

mean deviation (MD) and the root mean square deviation (RMSD) statistics: 

Formula 11.5 

𝑀𝐷𝑔 = ∫[𝑝𝑔
𝑜𝑏𝑠(𝜃) − 𝑝𝑔

𝑒𝑥𝑝
(𝜃)]𝑓𝑔(𝜃)𝑑𝜃, 
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Formula 11.6 

𝑅𝑀𝑆𝐷𝑔 = √∫[𝑝𝑔
𝑜𝑏𝑠(𝜃) − 𝑝𝑔

𝑒𝑥𝑝
(𝜃)]

2
𝑓𝑔(𝜃)𝑑𝜃, 

where g = 1, …, G is a country-by-language group;⁡𝑝𝑔
𝑜𝑏𝑠(𝜃) and⁡𝑝𝑔

𝑒𝑥𝑝
(𝜃) are the observed and expected 

probability of a correct response given proficiency 𝜃; and 𝑓𝑔(𝜃) is the group-specific density on the students’ 

ability scale (Khorramdel, Shin and von Davier, 2019[22]; von Davier, 2005[23]). The observed probability 

correct is based on the pseudo counts from the expectation-maximization (EM) algorithm that is used to 

estimate the model (Bock and Aitkin, 1981[24]), while the expected probability correct is based on the 

estimated item parameters. The moments of the group-specific densities are also estimated for each 

country-by-language group (Xu and von Davier, 2008[25]). 

The observed item characteristic curve (ICC) is obtained from the observed responses across students for 

each item, and the expected ICCs are computed based on the IRT model using the estimated item 

parameters. RMSD quantifies the magnitude and MD quantifies the magnitude and direction of deviations 

in the observed data from the estimated common or group-specific item characteristic curves for each 

single item. However, while MD is sensitive to the difference in observed and model-based item difficulty 

represented by the b parameter in formulae 11.1 and 11.2, RMSD is sensitive to the differences in both 

item difficulty and item discrimination represented by the a (or slope) parameter in formulae 11.1 and 11.2. 

To demonstrate the use of item fit statistics (RMSD, MD), Figure 11.10 shows one example plot for a 

dichotomously scored item estimated via the 2PLM. It illustrates how the common item parameter fits data 

from all groups, except for one group. In the figure, the solid black curve is the model-based 2PLM item 

response curve that corresponds to the common item parameters; the other lines are observed proportions 

of correct responses along the proficiency scale (horizontal axis) for the data from each group. This plot 

indicates that the IRT model-based curve conforms to the observed data; proportions of correct responses 

given the proficiency are quite similar for most countries/economies. However, the data for one 

country/economy, indicated by the yellow line, shows a noticeable departure from the common item 

characteristic curve and curves for other groups. This item is far more difficult in that particular 

country/economy, conditional on proficiency level. Thus, a unique set of parameters would be estimated 

for this item, for this group. 

Figure 11.10. Item response curve (ICC) for an item where the common item parameter is not 
appropriate for one group 
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Calibration and scaling of the mathematics and reading adaptive domains 

The purpose of adaptive testing is to better match test difficulty with student proficiency and avoid 

administering items that are either too easy or too difficult. Unlike data collected using traditional linear 

testing, this results in some of the data (responses to some of the relatively easy or difficult items) being 

missing not at random and a reduced overlap between test forms delivered to students having different 

proficiency levels. Unfortunately, using such data for IRT scaling could lead to bias in the item parameters 

and the student proficiency estimates (Jewsbury and van Rijn, 2020[26]). To address this issue, many 

testing programs use a two-step data collection design that allows for item parameters to be pre-calibrated 

through a non-adaptive data collection. Then, once their item parameters have been established, they are 

incorporated into the operational instrument administration (Glas, 2010[27]). However, for PISA, such 

approach would require the collection of much larger, population representative, field trial data. 

Instead, the PISA reading and mathematics MSATs were designed to ensure both adaptation for many 

countries/economies performing across wide proficiency ranges, and appropriate data collection for the 

accurate scaling and estimation of international and unique parameters for all countries/economies. To do 

so, three issues that could threaten the quality of the reading and mathematics PISA scaling were 

addressed. 

First, in designing and finalizing the MSAT, units were assigned to ensure the linkage across different 

MSAT forms (i.e., routing paths) through common units appearing multiple times across testlets. Similar to 

the BIB designs used in earlier PISA cycles, in which the same cluster appears across different forms, 

such linkage through common units across different testlets was expected to improve the efficiency of the 

item calibration. Such design considerations were tested and verified with simulation studies before the 

main survey implementation. Second, a proportion of students were assigned in a non-adaptive manner 

by overwriting some routing decisions as part of the reading MSAT design or by developing a non-adaptive 

MSAT assigned to a proportion of students as part of the mathematics hybrid MSAT design. In both cases, 

this ensured that more than 250 responses across the full proficiency range were collected for all items in 

all countries/economies. Third, the order of position of units within testlets has to vary to be able to adapt 
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and assemble easier and more difficult testlets. See Chapter 2 for more detailed descriptions of the design 

implemented. 

The effectiveness of the PISA MSAT designs was investigated during their development using data 

simulation and field trial data, and the quality of the designs implemented was confirmed using main survey 

data. 

Within-testlet unit order effects were examined in the 2022 mathematics and the 2018 reading field trials 

to confirm the invariance of item parameters by unit order (Yamamoto et al., forthcoming[28]). If the unit 

order had shown to significantly impact item parameter and proficiency estimates, an MSAT design could 

not have been implemented because a significant lack of invariance would undermine the effectiveness of 

the design. The field trial results confirmed the feasibility of introducing an MSAT into the main survey, as 

unit order effects were found to be negligible. 

Model data fit from the same calibration approach used for other non-adaptive domains and alternatives 

that incorporated MSAT-specific information, such as routing outcomes to define the group in the multi-

group calibration process, were evaluated through simulation studies (van Rijn and Shin, 2019[29]). Results 

showed that incorporating MSAT-specific information in the group definition for the multiple-group IRT 

model resulted in larger errors in the item parameter estimation. Because routing decisions in PISA are 

largely based on cognitive responses (i.e., sum scores based on the machine-scored items), using this 

information again to define groups for the multiple-group IRT model would violate the conditional 

independence assumptions. In the end, after reviewing the results from calibrating simulated data and the 

collected main survey data, it was determined that the same approach used for the calibration of the other 

non-adaptive domains was appropriate. A recent study (Jewsbury et al., 2023[30]) also provides theoretical 

justification for this choice. 

Calibration and scaling of reading fluency 

As discussed in Chapter 3, reading fluency items were included as a part of the reading scale, which was 

assessed principally through the reading MSAT. These items were introduced in 2018 to increase the 

measurement precision at lower levels of the reading scale. However, as their content and format tend to 

differ from that of the “regular” reading items, the reading fluency items could affect the existing reading 

scale. Therefore, following the procedure established in 2018 data ( (OECD, 2022[31]), Chapters 9 and 12), 

to maintain the existing reading scale and avoid any potential issues that could weaken the comparability 

of the reading scale across cycles, the calibration of reading fluency items was done after the estimation 

of reading items had been finalized. That is, after the scaling of “regular” reading items was finalized, the 

reading fluency data was added to the reading data and the reading fluency items were scaled. Because 

all items were trend, their parameters were fixed to their final 2018 values. 

Population modelling and multiple imputation 

This section describes the population modelling approach that is employed in the analyses of PISA data 

that combines the latent regression model for a large number of background variables with the IRT model 

for cognitive item responses. It also explains the imputation methodology for obtaining plausible values for 

proficiency (both scales and subscales) and for using these to estimate descriptive statistics for populations 

and subpopulations. This methodology provides countries/economies with databases that can be used for 

secondary analyses of relationships between proficiency and background variables. 

The prime goal of PISA is to compare the skills and knowledge of 15-year-old students across 

countries/economies and over cycles, reporting on group-level scores in the core domains of mathematics, 

reading, and science, as well as other domains (Kirsch et al., 2013[32]). For group-level reporting 

assessments such as PISA, where the number of items that can be administered to each student is limited 
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and where the focus of the assessment is on population characteristics, the use of point estimates could 

lead to seriously biased estimates of population characteristics (Mislevy, 1991[33]; Thomas, 2002[34]; von 

Davier, Gonzalez and Mislevy, 2009[35]; von Davier et al., 2006[36]; Wingersky, Kaplan and Beaton, 

1987[37]).5 Reporting outcomes are not intended to have consequences of any sort for individual students, 

and test forms are kept relatively short to minimise the testing burden on students. At the same time, 

PISA aims to provide a broad content coverage of each of the domains through a large number of items 

organised into different, but linked, test forms. Thus, each student receives a relatively small number of 

items from two domains in a two-hour testing period. 

Population modelling for PISA 2022 followed the same general approach used in previous cycles. This 

approach incorporates the IRT scaling of the students’ cognitive data from multiple domains, and the 

students’ background data specified as covariates (e.g., gender, country/economy of birth, academic and 

non-academic activities, attitudes, etc.) through multivariate latent regression models (von Davier et al., 

2006[36]). Data from multiple cognitive domains are modelled together to increase the accuracy of the 

population estimates in each domain by borrowing information from the other cognitive domains. The 

plausible value methodology uses the latent regression models estimated from each country/economy 

data to impute multiple proficiency values (plausible values) for each student instead of a single point 

estimate in each domain. The imputation draws the plausible values from the posterior distributions 

constructed through the multivariate latent regression model and the student data. The multiple imputations 

from the posterior distributions can then be used to appropriately account for measurement errors in the 

relations between (sub)population proficiency distributions and characteristics in the background data. 

IRT scaling, latent regression, and multiple imputation are carried out through the following steps: 

1. IRT scaling: estimates the item parameters for each domain to provide comparable scales across 

countries/economies and cycles using the unidimensional IRT models described in Formula 11.1 

and Formula 11.2 (see also section “IRT calibration and scaling”). 

2. Latent regression: estimates the regression coefficients () and the residual variance-covariance 

matrix () using the estimated item parameters from step 1 as true values (Thomas, 1993[38]). 

3. Multiple imputation: draws ten plausible values for each student on each domain from posterior 

distributions of proficiency using estimated  and  (Mislevy and Sheehan, 1987[39]; von Davier, 

Gonzalez and Mislevy, 2009[35]). 

Because of the large number of background collected, a “divide-and-conquer” approach (Patz and Junker, 

1999[40]) is used to reduce the computational burden of Step 2 (latent regression) and to avoid over-

parametrisation. First, all variables in the BQ are contrast coded.6 Contrast coding allows for the inclusion 

of missing responses and avoids the necessity of assuming a linear relationship between the responses 

to any question and the outcome variable. Second, a principal components analysis (PCA) is conducted 

to 1) remove collinearity among variables when present and 2) reduce the large number of contrast-coded 

BQ variables into a smaller number of principal components that are sufficient to account for a large 

proportion of the variation in the BQ variables without over-parameterisation. This process is conducted 

country/economy by country/economy to accommodate common BQ variables collected across all 

countries/economies, to accommodate optional specific BQ variables of participating country/economy’s 

interest, and to allow for the estimation of country/economy-specific relationships between the BQ data 

and the proficiency variables. 

The country/economy-specific multivariate latent regression gives an expression for student’s proficiency 

distributions on the multidimensional scales conditional on covariates (y) in addition to the item responses 

(x). Based on Bayes’ theorem, the posterior distribution of skills given the observed item responses and 

covariates (i.e., contextual information) is constructed as follows: 
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Formula 11.7 

𝑃(𝜽𝑣|𝒙𝑣 , 𝒚𝑣 , 𝛤, 𝛴) ∝ 𝑃(𝒙𝑣|𝜽𝑣 , 𝒚𝑣 , 𝛤, 𝛴)𝑃(𝜽𝑣|𝒚𝑣, 𝛤, 𝛴) ⁡= 𝑃(𝒙𝑣|𝜽𝑣)𝑃(𝜽𝑣|𝒚𝑣, 𝛤, 𝛴), 

where 𝜽𝑣 is a vector of length D with scale values (these values correspond to performance on each of the 

skills) for student v. As shown, the posterior distribution of proficiency is proportional to the likelihoods of 

the item-response data and prior distributions. Given the conditional independence assumption, 𝑃(𝒙𝑣|𝜽𝑣) 

is the product of independent likelihoods for the observed response to each cognitive item (estimated by 

IRT models) within each scale (i.e., the likelihood is factored). Next, 𝑃(𝜽𝑣|𝒚𝑣 , Γ, Σ), which is a prior 

distribution, is the multivariate joint density of proficiencies of the scales, conditional on the extracted 

principal components derived from background responses, and parameters  and . Note that Formula 

11.7 technically also depends on the item parameters, but these are treated as fixed in the computations 

in steps 2 and 3 and therefore dropped from the equation. 

More precisely, the latent proficiency variables for each student v are assumed to follow multivariate normal 

distributions: 

Formula 11.8 

θv  ND (’yv, ), 

where  is the 𝐾 × 𝐷 matrix of regression coefficients, K is the number of conditioning variables (the 

number of principal components plus a dummy for the intercept), and  is the 𝐷 × 𝐷 residual variance-

covariance matrix. As noted, the parameters  and  are estimated using the estimated item parameters 

from the first step. Let 𝜙(𝜃𝑣|Γ′𝑦𝑣 , Σ) denote the multivariate normal density with mean Γ′𝑦𝑣 and covariance 

matrix Σ. 

Operationally, the procedure is repeated several times to model the main and financial literacy datasets 

from each country/economy. Once focusing on the core domain data (mathematics, reading, and science; 

then 𝐷 = 4). Twice focusing on each of the two sets of 4 mathematics subscales data with the reading and 

science data (𝐷 = 6). Once focusing on the creative thinking data with the core domains data (𝐷 = 5). And 

once focusing on financial literacy with mathematics and reading data (𝐷 = 3). Latent correlations among 

those domains are estimated as part of the 𝐷 × 𝐷 residual variance-covariance matrix. 

Involving all students in the country/economy, the weighted likelihood function becomes 

Formula 11.9 

𝐿(𝛤, 𝛴; ⁡𝑿, 𝒀) =∏𝑤𝑣∫∏𝑃(𝒙𝑣𝑑|𝜃𝑑)

𝐷

𝑑=1

𝜙(𝜽|𝛤′𝒚𝑣 , 𝛴)𝑑𝜽,

𝑁

𝑣=1

 

where 𝒙𝑣𝑑 is the vector of item responses of students for dimension d. As noted above, the item parameters 

𝜷𝑑 associated with 𝑃(𝒙𝑣𝑑|𝜃𝑑) for dimensions d=1,…,D are estimated in the IRT item calibration stage, prior 

to the estimation of the latent regression 𝜙(𝜽|Γ′𝒚𝑣 , Σ), and treated as fixed. That is, the latent regression 

parameters Γ and Σ are estimated conditionally on the previously estimated item parameters 𝜷. 

As suggested by Mislevy et al. (1992[41]), the expectation-maximization (EM) algorithm (Dempster, Laird 

and Rubin, 1977[42]) is used for maximizing the likelihood function in Formula 11.9 with respect to  and . 

A multivariate variant of the latent regression model based on the Laplace approximation (Thomas, 

1993[38]) is applied in reporting PISA proficiencies on more than two dimensions (domains and 

subdomains). 
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After the estimation of regression parameters through the EM algorithm is completed, multiple imputations 

(plausible values) for each student v are drawn from a normal approximation of the conditional posterior 

distribution of proficiency. More specifically, plausible values are drawn following a three-step process. 

First, a value for  is drawn from 𝑁𝐷(Γ̂, 𝑉(Γ)̂) where 𝑉(Γ)̂ is the estimated variance of the maximum 

likelihood estimate Γ̂ obtained from the EM algorithm (Rubin, 1987[43]). Second, conditional on the 

generated value for  and the fixed value of Σ = Σ̂ obtained from the EM algorithm, the Laplace 

approximations to the individual posterior mean and variance are computed denoted by 𝜽̃𝒗 and 𝛴̃𝑣 , 

respectively. In the third step, the 𝜽𝑣 are drawn independently from a multivariate normal distribution 

𝑁(𝜽̃𝒗, 𝛴̃𝑣) for each student v (Chang and Stout, 1993[44]). These three steps are repeated 10 times, 

effectively resulting in 10 plausible values for 𝜽𝑣 for each student. 

Analysis of data with plausible values 

If the multivariate latent proficiencies 𝜽𝑣 were known for all students, it would be possible to directly 

compute any statistic 𝑡(𝜽, 𝒚), for example, subpopulation sample means, sample percentiles, or sample 

regression coefficients, to estimate a corresponding population quantity T. However, 𝜽 values are not 

observed, but estimated latent variables through measurement models. To overcome this problem, the 

approach developed by Rubin (1987[43]) is taken in which 𝜽 is treated as missing data. 

Therefore, the value 𝑡(𝜽, 𝒚) is approximated by its expectation given the observed data, (𝒙, 𝒚), as follows: 

Formula 11.10 

𝑡∗(𝒙, 𝒚) = ⁡𝐸[𝑡(𝜽, 𝒚)|𝒙, 𝒚] ⁡⁡= ∫ 𝑡(𝜽, 𝒚)𝑝(𝜽|𝒙, 𝒚)𝑑𝜽. 

It is possible to approximate t* using plausible values (also referred to as multiple imputations) instead 

of the unobserved 𝜽 values. A replication approach [see, e.g., Johnson, (1989[45]); Johnson and Rust 

(1992[46]); Rust, (2014[47])] is used to obtain a variance estimate for the proficiency means of each 

country/economy and other statistics of interest, and to estimate the sampling variability as well as the 

imputation variance associated with the plausible values. 

As described in the earlier section, plausible values are random draws from the posterior distribution of the 

proficiencies given the item responses 𝒙𝑣, background variables 𝒚𝑣, and estimated model parameters. 

For any student, the value of 𝜽𝒗 used in the computation of t is replaced by a randomly selected value from 

the student’s posterior distribution. Rubin (1987[43]) argued that this process should be repeated several 

times so that the uncertainty associated with imputation can be quantified. For example, the average 

of multiple estimates of t, each computed from a different set of plausible values, is a numerical 

approximation of t* in the above Formula (11.10); the variance among them reflects uncertainty due to not 

observing 𝜽𝒗. It should be noted that this variance does not include any variability due to sampling from 

the population. 

It cannot be emphasized strongly enough that the plausible values are not a substitute for individual point 

estimates (e.g., single test scores). Plausible values are used to make accurate group-level inferences, 

but they should not be used to make any inferences about individuals. Plausible values are only 

intermediary computations in the calculation of the expectations in order to estimate population 

characteristics such as subgroup means and standard deviations. When the underlying model is correctly 

specified, plausible values will provide consistent estimates of population characteristics, even though they 

are not generally unbiased estimates of the individual proficiencies with whom they are associated 

(Marsman et al., 2016[48]; von Davier, Gonzalez and Mislevy, 2009[35]). Unlike the plausible values, the 

more familiar ability estimates of educational measurement are optimal for each student (e.g., bias-
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corrected maximum likelihood estimates, which are consistent estimates of a student’s proficiency, or 

Bayesian posterior mean estimates, which provide minimum mean-squared errors with respect to a 

reference population). Point estimates that are optimal for individual students have distributions that can 

produce decidedly non-optimal and biased estimates of population characteristics (Little and Rubin, 

1983[49]). Plausible values, on the other hand, are constructed explicitly to provide consistent estimates 

of population effects. For a further discussion of plausible values, see Mislevy et al. (1992[41]). 

Once the plausible values for each students have been produced (in PISA U=10 plausible values are 

produced for each student for each domain except Creative Thinking, for which 10 plausible scores are 

generated 7), they can be employed to estimate the value of a population, subpopulation or group estimator 

T (e.g., mathematics proficiency) and the magnitude of the errors associated with the estimate as follows: 

1. Use the vector made up of the of first of the students’ plausible values, and calculate the group 

estimator T as if the plausible values were the true values of . Denote the result T1. 

2. Calculate the sampling variance of T1. Denote the result V(T1). 

3. Carry out steps 1 and 2 for each of the U vectors of plausible values, thus obtaining Tu and V(Tu) 

for u = 1,2,…,U. 

4. The best estimate of the group quantity T is then the average of 𝑇𝑢, obtainable from the U sets 

of plausible values: 

Formula 11.11 

𝑇.=
∑ 𝑇𝑢
𝑈
𝑢=1

𝑈
. 

1. An estimate of the error variance of the estimator T is the sum of two components, which are the 

variance due to sampling of examinees and the variance due to latency of the proficiency  (often 

called measurement error): 

Formula 11.12 

𝑉(𝑇. ) =
∑ 𝑉(𝑇𝑢)
𝑈
𝑢=1

𝑈
+ (1 +

1

𝑈
)
∑ (𝑇𝑢 − 𝑇. )2𝑈
𝑢=1

𝑈 − 1
. 

The first component in V(T.) reflects uncertainty due to sampling from the population because PISA 

samples only a portion of the entire population of 15-year-old students. The second component reflects 

uncertainty due to measurement error because the students’ proficiencies 𝜽 are estimated from a limited 

number of item responses for each respondent. 

Example for partitioning the estimated error variance 

The following example illustrates the use of plausible values for partitioning the error variance in one 

country/economy. Table 11.12 presents data for six subgroups of students differing in the context 

questionnaire variable “Books at home” (variable ST013Q01TA, where 1 = 0-10 books; 2 = 11-25 books; 

3 = 26-100 books; 4 = 101-200 books; 5 = 201-500 books; 6 = more than 500 books). Ten plausible values 

were calculated for each student in a domain. This table presents the means 𝑇𝑢𝑔 and the sampling 

standard errors 𝑉(𝑇𝑢𝑔)
1/2 for each plausible value (u=1, …,10) and each subgroup defined by the variable 

ST013Q01TA (g=1,…,6). The bottom section of the table shows the resulting estimates and errors for each 

subgroup. 
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Because the standard error associated with the group estimator T is comprised of sampling error and 

measurement error, it can be reduced by either increasing the precision of the measurement instrument 

or reducing the sampling error. In PISA, a resampling method is used to estimate the sampling variance 

𝑉(𝑇𝑢𝑔), which uses a balanced repeated replication (BRR) approach (See Chapter 10 for details). This 

component of variance is similar across the ten plausible values; its values are influenced by the 

homogeneity of proficiencies among students in the subgroup. Note that the sampling error is generally 

much larger than the measurement error. 

Application to the PISA 2022 Main Survey 

This section describes the implementation of IRT scaling and population modelling of the PISA 2022 main 

survey data. Details of the data and procedure implemented, in particular for the mathematics and reading 

domains that implemented MSAT as well as for the reading fluency items are described first. The 

dimensionality analyses conducted to verify the applicability of the unidimensional 2PLM and GPCM 

models to the mathematics MSAT and the innovative creative thinking domains are described next. Then, 

the country/economy-specific population modelling analyses and the generation of plausible values are 

detailed. Finally, the procedure utilised to estimate the linking errors between the 2022 and prior PISA 

cycles is explained. 

IRT scaling 

IRT scaling is the first step in the modelling of PISA data. It was conducted through the multi-group IRT 

calibration and scaling approach described earlier, using the international 2022 main survey data and using 

the trend item parameters fixed to their values established in the previous PISA cycle (common 

international or unique country-by-language) to ensure appropriate linking to the PISA scale. Each domain 

was calibrated separately using the mdltm software (Khorramdel, Shin and von Davier, 2019[22]; von 

Davier, 2005[23]) setup to fix already established item parameters and to estimate new ones with the 

unidimensional 2PLM and GPCM models. 

The mathematics and financial literacy assessments included both trend and new items. Reading and 

science included only trend items. As the innovative domain, creative thinking included only new items. All 

the PBA and new PBA assessments of mathematics, reading, and science included only trend items, with 

PBA being the same instruments since 2015 and new PBA being the same instrument as the PISA for 

Development 2018 instrument (sharing many items in common with PBA) (OECD, 2019[50]). 

Table 11.13 details the number of trend and new items kept in the analyses after some items were dropped 

due to content and/or psychometric reasons that could not be resolved (1 in mathematics, 1 in reading, 1 

in financial literacy and 6 items in creative thinking). 

The total numbers of students for each domain-specific IRT calibration are detailed in Table 11.14. 

Calibrations were conducted using the final student weights provided by sampling for each 

country/economy (Chapter 6, this report) adjusted so the total student weight for each country/economy 

was 5,000. In this way all participating country/economy contributed equally to the estimation of the new 

items’ international parameters. However, the unweighted number of item responses was used to check 

whether the minimum number of 250 responses required for evaluation item-by-country-by-language 

interactions (item-fit) was reached. This was done to ensure that the MD and RMSD statistics could be 

accurately estimated and the decision to estimate unique parameters when item-misfit was detected 

appropriate. Nonresponses prior to a student’s last valid item response in a cluster were considered 

omitted and treated as incorrect responses; whereas nonresponses at the end of the cluster were 

considered not-reached and treated as missing. For CBA mathematics and reading, because of their 



24    

PISA 2022 TECHNICAL REPORT © OECD 2023 
  

MSAT design, the treatment of omit and not-reached responses was done considering the whole test 

rather than by cluster. 

Estimation of common international and group-specific item parameters 

Different language versions of the assessment used in countries/economies could result in some items 

functioning differently in some country-by-language groups. Thus, different language versions of the 

assessment within a country/economy were treated as separate groups when estimating item parameters. 

In total, 116 country-by-language groups were used in PISA 2022 multiple-group IRT calibrations for CBA 

reading, mathematics, and science. In creative thinking and financial literacy 102 and 31 country-by-

language groups were analysed, respectively. For PBA and New PBA, 4 countries, each using 1 language 

were analysed. 

To account for cultural and language differences, the stepwise calibration process described earlier was 

implemented to scale the 2022 data. In the first calibration and fit analyses run, for the trend items, common 

and group-specific item parameter estimates obtained from the PISA 2018 scaling were used as fixed 

values. For the new items, common item parameters to all the groups were estimated. Given these 

parameter estimates, RMSD and MD fit statistics were then computed for all items in all groups, and cases 

with RMSD above a threshold8 were identified. 

In the relatively rare instances where large RMSD misfit was found (values above 0.4), the item was 

dropped in the specific group (i.e., excluded from scaling in that group). In the subsequent calibrations and 

fit analyses runs, unique parameters were estimated, as long as there were 250 unweighted responses, 

gradually lowering the RMSD threshold to 0.12—a value that was found to be optimal for maximizing both 

the overall model-data fit and the proportion of international item parameters across country-by-language 

groups (Joo et al., 2019[51]). A review of the results obtained in the final calibration run was also conducted 

to identify any case where even with unique parameters estimated a value below RMSD of 0.18 could not 

be reached or very low slope parameter (below 0.1) or extreme difficulty parameters (above 5 in absolute 

value) were obtained. When such cases were found, the item was dropped in the specific group or specific 

groups. 

In addition to ensuring appropriate model fit and reducing the measurement error, maintaining the 

comparability of scales through common item parameters across countries/economies, assessment 

modes, and assessments over time is of prime importance. Therefore, the mdltm software used for item 

calibration implements an algorithm that monitors RMSD and MD across the specified groups 

and suggests a list of items to be re-estimated for each group. This algorithm seeks to minimize the number 

of group-specific item parameters needed to fit the data. It does so, item by item, constraining the item 

parameters to be the same across the groups in which the item exhibits misfit in the same direction (positive 

or negative). Thus, the same specific item parameters may be unique to one group or multiple groups (e.g., 

country-by-language groups) exhibiting similar misfit patterns. Ultimately, through the iterative process it 

may be discovered that the unique parameters common to more than one group need to be relaxed further 

and re-estimated separately to reach the desired fit. But this is done only when needed so that the total 

number of unique parameters is minimized across all countries/economies. 

Dimensionality analyses 

The results of the scaling analyses just described show that the IRT models used, with the 

unidimensionality and local independence assumptions, do fit the data quite well. However, it was 

important to further evaluate these assumptions for the major and the innovative domains, which included 

a large proportion of newly developed items and all newly developed items. 

Residual analyses of field trial mathematics and creative thinking data and residual analysis of main survey 

creative thinking data were conducted for each country/economy to assess both the conditional 
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independence and unidimensionality assumptions. For mathematics, additional dimensionality analyses of 

the main survey data were conducted to verify that the new items developed based on the revised 

framework do not introduce a new dimension, distinct from the one captured by the mathematics PISA 

scale developed in prior PISA cycles. This was done by fitting a two-dimensional IRT simple-structure 

model which treated trend and new items as two different latent traits and evaluating the extent to which 

the more complex two-dimensional model of the total weighted data from all countries/economies provided 

a significant improvement in fit. These analyses were conducted in the same way as in previous cycles for 

the major domain of mathematics and the innovative creative thinking domain (OECD, 2017[3]; 2020[52]). 

The methods implemented to conduct residual analysis are detailed below; results are reported in the next 

sections. 

The mdltm software (von Davier, 2005[23]) computes residuals in the step that follows the item calibration. 

For dichotomous item responses, response residuals for a person v with estimated ability 𝜃𝑣 for each item 

i = 1,..., n were defined as below: 

Formula 11.13 

𝑟(𝑥𝑣𝑖) =
𝑥𝑣𝑖 − 𝑃(𝑋𝑖 = 1 ∣ 𝜃𝑣)

√𝑃(𝑋𝑖 = 1 ∣ 𝜃𝑣)[1 − 𝑃(𝑋𝑖 = 1 ∣ 𝜃𝑣)]

. 

For polytomous item responses, response residuals were calculated using the conditional mean and 

variance defined below: 

Formula 11.14 

𝑟(𝑥𝑣𝑖) =
𝑥𝑣𝑖 − 𝐸(𝑋𝑖 ∣ 𝜃𝑣)

√𝑉(𝑋𝑖 ∣ 𝜃𝑣)

, 

Formula 11.15 

𝐸(𝑋𝑖 ∣ 𝜃𝑣) = ∑𝑘𝑃(𝑥𝑣𝑖 = 𝑘|𝜃𝑣)

𝑚𝑖

𝑘=1

, 

Formula 11.16 

𝑉(𝑋𝑖 ∣ 𝜃𝑣) = ∑𝑘2𝑃(𝑥𝑣𝑖 = 𝑘|𝜃𝑣)

𝑚𝑖

𝑘=1

− [𝐸(𝑋𝑖 ∣ 𝜃𝑣)]
2
. 

Once the item response residuals have been calculated, the item residual correlations across respondents 

can be computed to produce an item residual correlation matrix. Although the null distribution of such 

residual correlations--also known as the Q3 statistic (Yen, 1984[53]) — are not well known, unidimensional 

and locally independent data are expected to show random residual correlations patterns around zero 

across all items and across items within each unit (Chen and Thissen, 1997[54]; Yen, 1984[53]). Local item 

dependencies are found when an item pair shows highly correlated response residuals and their item slope 

parameter estimates are high. In such cases where an item pair or multiple item pairs within a unit show 
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local item dependence, this may be addressed by scoring these two items or the whole unit as a single 

polytomous score and modelled with the partial or generalized partial credit model described earlier in this 

chapter (Rosenbaum, 1988[55]; Wilson and Adams, 1995[56]). 

Following the inspection of the residual correlation matrix and the treatment of local item dependences, 

principal component analysis of the residual correlation matrix was conducted to evaluate the extent to 

which the instrument is unidimensional. If the unidimensionality assumption holds, little common variance 

among the item response residuals is expected after the ability dimension has been accounted for by the 

IRT model. In this case, a principal component analysis will produce a scree plot where no single 

component accounts for much more variance than any other. 

Mathematics dimensionality analyses 

Residual-based dimensionality analyses of the CBA mathematics were conducted on the field trial data to 

identify potential local item dependence and to confirm the unidimensionality of the mathematics 

instrument assembled for the main survey. Based on the item-by-item correlations for all mathematics 

items, no item pairs were identified with exceptionally strong correlations. Furthermore, the unidimensional 

IRT scaling analyses of the field trial data and later the main survey data (as described above) did not 

show any items with unusually large slope parameters. Both IRT scaling and residual analysis provided 

evidence that the conditional independence assumption was not violated. 

The two-dimensional IRT modelling of the mathematics main survey data, where trend and new items were 

assigned to two different latent proficiency scales, provided an additional check of the unidimensionality 

assumption. When the multidimensional IRT model was fitted, the trend item parameters were fixed to the 

common international item parameters obtained from the PISA 2018 cycle, and the new items were 

constrained to the newly estimated unidimensional international parameters. Although the Akaike 

Information Criterium (AIC) (Akaike, 1974[57]) showed better fit for the two-dimensional model, the Bayesian 

Information Criterium (BIC) (Schwarz, 1978[58]) and the log-penalty improvement showed that the 

unidimensional model fits better and the multidimensional model provides very little improvement over the 

unidimensional model (Table 11.15). In particular, it was found that the unidimensional model reached 

99.8% of the model fit improvement over the independence model compared to the gains expected from 

the multidimensional model. Similarly, the two-dimensional IRT model of the field trial data showed only 

marginal improvement in overall model fit over the unidimensional IRT model. Moreover, the correlations 

of two sets of group means (the trend item only and the new items only) from the multidimensional model 

were very high, ranging from 0.91 to 0.99 across the different country-by-language groups. Additionally, 

the dimension-specific weighted likelihood estimates (WLEs) of student ability were very highly correlated 

with the unidimensional WLEs. 

Considering all the evidence gathered from the field trial and main survey data analyses, there is strong 

evidence that the new and trend mathematics items and scores can be placed on the existing 

unidimensional PISA scale. 

Creative thinking dimensionality analyses 

As the innovative domain, creative thinking was an entirely new domain in 2022. Field trial analyses 

showed that the instrument was essentially unidimensional. For the main survey, 36 items were selected 

out of the 40-item field trial item pool. The unidimensional IRT scaling of the main survey data was 

conducted and response residuals were calculated. Pairwise residual item correlations were then 

computed for each country-by-language group and averaged across groups. Figure 11.11 shows the 

residual correlation matrix obtained. Besides the dark green squares on the diagonal that represent each 

item correlating with itself, no strong pairwise residual correlation and no noticeable patterns that could be 

indicative of additional dimension(s) was observed. 
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Figure 11.11. Residual correlation matrix for the creative thinking main survey 

 

As part of the residual analysis, principal components of the residual correlation matrix were extracted. 

Should the eigenvalue of the first principal component be much larger than the other principal components, 

an additional latent trait, other than the overall ability, could be present. When all the item residual 

correlations are included as variables, the percentage of variance adds up to 100%. Analysis results across 

countries/economies, showed that the percentage of variance for the first principal component ranges from 

7.1% to 13.7% with a median of 10.2% and the percentage of variance accounted for by the first 

10 principal components ranges from 50.8% to 73.65%, with a median value of 63.14%. Thus, the first 

component did not account for a large part of the variance accounted for by the first ten components. This 

was confirmed by inspection of each country/economy principal component analysis scree plots in most 

cases. 

The plots in Figure 11.12 show six countries’ scree plots as the most distinctive examples. In most cases 

illustrated by the top three scree plots no clear “elbow” that would be indicative of an additional dimension 

not accounted for by the unidimensional IRT scaling. However, in a few cases some evidence of 

multidimensionality was observed. Nevertheless, overall, the results supported the scaling and reporting 

of creative thinking as proficiency using a unidimensional scale. 
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Figure 11.12. Percentage of variance from principal component analyses for 6 countries/economies 

 

Population modelling in PISA 2022 

The population model described earlier was applied to the PISA 2022 data. Fixing the item parameters to 

their values obtained from the unidimensional IRT scaling, multivariate latent regression models were fitted 

to the data at the country/economy level, and 10 plausible values per domain were generated for each 

student. Plausible values for core domains (reading, mathematics, and science) were generated for all 

students participating in the assessment, regardless of whether they were administered items in that 

domain. Plausible values for the innovative domain were generated for all students if countries/economies 

opted for the CrT domain. That is, students received plausible values for each test domain administered 

in their country/economy according to the test design implemented regardless of the specific forms they 

took. Students who did not participate or did not have responses in a particular domain were assigned 

model-dependent plausible values for that domain based on their responses to the BQ as well as the 

cognitive responses in other domains. 

Measurement errors must be considered when dealing with the plausible values in the secondary 

analyses. The plausible values for the domain(s) students did not take have larger uncertainty than the 

plausible values for the other domains that were administered to them. By using repeated analysis with 

each of the 10 plausible values, the measurement error will readily be reflected in the analyses and the 

final aggregation of results can be conducted in a way that the variability across the 10 analyses is properly 

reflected. 

While most covariates used in the population modelling come from the student BQ responses, some 

additional covariates were derived from the cognitive assessment’s process data. Same as done in PISA 

2018 (see Annex H of the PISA 2018 technical report), such derived covariates include response time 

information, and school-level WLEs to capture the unique variations across schools, which are relevant for 

predicting proficiency distributions within each country/economy. 
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The following sections provide further information about how the population model was applied to PISA 

2022 data, how plausible values were generated, and how plausible values can be used in further 

analyses. 

Main sample, creative thinking and financial literacy sample models 

The software called DGROUP (Educational Testing Service, 2012[59]) was used to estimate the multivariate 

latent regression models and generate plausible values (von Davier and Sinharay, 2014[12]; von Davier 

et al., 2006[36]). During the estimation, the item parameters for the cognitive items were fixed at the values 

obtained from the multi-group IRT models described earlier in this chapter. As in previous PISA cycles, 

nearly all student BQ variables, as well as some contextual characteristics, were included. 

All BQ variables were contrast-coded before they were processed further. The contrast coding scheme 

is reproduced in Annex B of this report. Contrast coding allows for the inclusion of missing responses and 

avoids the necessity of assuming a linear relationship between the responses to any question and the 

outcome variable. Note that with the introduction of within-construct matrix sampling design, missing by 

matrix-sampling design and missing by omitting behavior were distinguished, which increased the number 

of contrast codes for BQ variables. With contrast-coded BQ variables, a PCA is conducted to 1) remove 

collinearity among variables when present and 2) reduce the large number of contrast-coded BQ variables 

into a smaller number of principal components that are sufficient to account for a large proportion of the 

variation in the BQ variables without over-parameterisation. Because each country/economy can have 

unique associations among the BQ variables, a set of principal components was calculated for each 

country/economy. As such, the extraction of principal components was carried out separately 

by country/economy. In PISA, the number of principal components retained in each of the multivariate 

latent regression models was selected to be the smaller of 1) the number of principal components needed 

to explain 80% of the BQ variance, and 2) the number that corresponds to 6.7% (1/15) of the raw sample 

size. Note that in previous PISA 2015 and 2018 cycles, the number that corresponds to 5% (1/20) of the 

raw sample size was used. However, with the increase in BQ scales and variables, the rule was relaxed 

to retain more information in the extracted principal components. Still, this avoided a numerical instability 

in the estimation that could occur due to potential overparameterization of the model. 

The main sample data collection included the core domains administered by all 81 participating 

countries/economies and the innovative creative thinking domain administered by 64 countries/economies. 

Separate population modelling analyses of the core domains, of mathematics subscales with reading and 

science, and of creative thinking with the core domains were conducted. The financial literacy sample data 

collection was offered as an international option and was administered by 20 countries/economies. The 

cognitive instruments included trend items from 2012, 2015, and 2018, and a few new items. For the 

population modelling, the financial literacy sample (who took Forms 67 – 74) was combined with the 

students from the main sample who took reading and mathematics only (Forms 1 – 12). This was done to 

establish a stable linkage between the financial literacy and main PISA forms, and the reading and 

mathematics domains. Thus, the financial literacy sample received plausible values in mathematics, 

reading, and financial literacy, but not in science and not in mathematics subscales. 

Treatment of students with fewer than six test item responses 

This section addresses the issue of students who provided background information but did not respond 

to enough cognitive items. Students with responses to fewer than six cognitive items in any domain were 

not included in the multivariate latent regression modelling to avoid unstable estimations of the  and . 

In PISA 2022, fewer than: 0.09% of students were excluded from the core domains CBA or new PBA 

multivariate latent regressions; 7.4% the mathematics sub-scales; 0.04% the creative thinking; and less 

than 0.03% from the financial literacy multivariate latent regressions. Nevertheless, the population model 
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was applied to these students for the generation of plausible values. For each of the two mathematics 

subscales (by process and by content), the proportion of students excluded from the modelling is larger 

because responses to at least six items in the relatively short subscales were needed to be included in the 

multivariate latent regression model. 

Consistent with the data treatment applied in the IRT scaling, nonresponses prior to a valid response were 

considered omitted and treated as incorrect responses; whereas nonresponses at the end of each of the 

cluster (for non-adaptive domains) or each MSAT session (for mathematics and reading) were considered 

not-reached and treated as missing in the population modelling and PV generation. 

Plausible values 

Plausible values for the domains evaluated were drawn from the normal approximations to the posterior 

distributions estimated from the multivariate latent regression models. 

The plausible value variables for the domains follow the naming convention PV1<domain> through 

PV10<domain>, where “<domain>” took on the following form: 

• MATH for mathematics 

• READ for reading 

• SCIE for science 

• CRTH_NC9 for creative thinking 

• FLIT for financial literacy 

 

Population modelling for the mathematics subscales 

The aim of generating plausible values for the different mathematics subscales is to provide proficiency 

estimates representative of important aspects within the overall mathematics framework. These subscales 

allow for secondary analyses of relationships between proficiency and BQ variables that focus of different 

aspects within the mathematics domain. However, it should be noted that subscales proficiencies 

(plausible values) are based on fewer items than the full scale and, thus, are associated with larger 

measurement error. 

There were two sets of subscales reported for mathematics. These were process subscales related to 

mathematical reasoning (employing mathematical concepts, facts, and procedures; interpreting, applying, 

and evaluating mathematical outcomes; formulating situations mathematically; reasoning) and content 

subscales related to mathematical content knowledge (space and shape; quantity; change and 

relationships; uncertainty and data). Mathematics subscales were computed for the CBA only. Table 11.16 

gives an overview of the 233 (one item was dropped) mathematics items by the cognitive process and the 

test structure. It should be noted that the two mathematics subscale category types are based on a two-

way classification of the same 233 items (distributed into the 4 + 4 = 8 subscales). In other words, each 

item contributed to one of the cognitive process subscales and one of the content subscales. 

Because the cognitive process subscales and the content subscales were based on the same set of 

mathematics items, population modelling for the cognitive process subscales and the population modelling 

for the content subscales could only be done separately. Therefore, two additional multidimensional 

population models were fitted for each CBA country/economy to provide the desired mathematics subscale 

PVs. These two models were: 

• Model 1: reading, science, and the four subscales of mathematics cognitive process, thus, 

6 dimensions in total; 
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• Model 2: reading, science, and the four subscales of mathematics content subscales, thus, 

6 dimensions in total. 

Reading and science data were used for the population modelling of the mathematics subscales to 

maximize the information used from the students. PVs were generated for those domains (reading and 

science) in these runs, but only the PVs for the mathematics subscales were included in the database for 

each set of mathematics subscales. 

The item parameters used for the population modelling of the mathematics subscales were the same as 

those for the overall mathematics scale described above, which were obtained from the unidimensional 

multi-group IRT model for mathematics. Therefore, the mathematics subscales and the overall 

mathematics scale proficiencies can be compared as they are on the same scale. However, because the 

mathematics scale is not the weighted average of the mathematics subscales, a country/economy’s mean 

proficiency in mathematics can be noticeably different from the country/economy’s mean subscale 

proficiencies. 

The plausible values reported for the mathematics subscales follow the naming convention 

PV1<subscale> through PV10<subscale>, where “<subscale>” takes on the following form: 

• MCCR Content Subscale of Mathematics – Change and Relationships 

• MCQN  Content Subscale of Mathematics – Quantity 

• MCSS  Content Subscale of Mathematics – Space and Shape 

• MCUD  Content Subscale of Mathematics – Uncertainty and Data 

• MPEM Cognitive Process Subscale of Mathematics – Employing Mathematical Concepts, Facts, 

and Procedures 

• MPFS Cognitive Process Subscale of Mathematics – Formulating Situations Mathematically 

• MPIN Cognitive Process Subscale of Mathematics – Interpreting, Applying, and Evaluating 

Mathematical Outcomes 

• MPRE Cognitive Process Subscale of Mathematics – Reasoning 

Finally, as noted earlier, PVs from the same draw should be used when assessing correlations between 

domains or when conducting secondary analyses, not from different draws. Thus, estimating correlations 

between MPEM1, MPFS1, MPIN1, MPRE1 is appropriate, while estimating correlations between MPEM1, 

MPFS2, MPIN3, MPRE4 is inappropriate. The same is true for the content subscale. Because the core 

domain PVs and the subscale PVs reported were draws from different population models, estimating 

correlations between them would not be appropriate. However, the correlations between the other 

cognitive domains and the subscales that are part of the each one of the two subscale population models 

estimated are reported in Chapter 14. 

Linking PISA 2022 to previous PISA cycles 

There are three measurable sources of error variance to account for when using the PISA data. These 

are error due to student sampling, error due to the reliability of the assessment, and error due to the 

linking of different instruments across assessment cycles. 

Following the approach implemented in 2015, an evaluation of the magnitude of linking error was 

conducted by considering differences between reported country/economy results from previous PISA 

cycles and the transformed results from rescaling prior to 2015. The magnitude of the linking errors is 

related to the changing assessment framework, instruments, mode of delivery and scaling methods over 

PISA cycles. It is also related to changes from major to minor domain that could leads to a recombination 

of items and units within clusters, as well as to changes in design from linear to adaptive. 
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As in past cycles, scale-level differences across countries/economies between adjacent calibrations are 

considered as the target of inference. The effect of the variability of two calibrations is evaluated at the 

cross-country/economy level, while within-country/economy sampling variability is not targeted. Moreover, 

sampling variance and measurement variance are two separate variance components that are accounted 

for by the variance estimation based on replicate weights and plausible values. Taken together, the focus 

of the linking error lies on the expected variability on the country/economy mean over the different 

calibrations. 

The definition of calibration differences starts from the ability estimates of a respondent v from 

country/economy g in a target cycle under two separate calibrations (e.g., the original calibration of a PISA 

cycle and its recalibration), C1 and C2. We can write for calibration C1: 

Formula 11.17 

𝜃̃𝑣,𝐶1,𝑔 = 𝜃𝑣,𝑡𝑟𝑢𝑒 + 𝑢̂𝐶1,𝑔 + 𝑒̃𝑣, 

where ûC1,g denotes the estimated country/economy specific error term in C1 and 𝑒̃𝑣 is the respondent 

specific measurement error; and for calibration C2 accordingly: 

Formula 11.18 

𝜃̃𝑣,𝐶2,𝑔 = 𝜃𝑣,𝑡𝑟𝑢𝑒 + 𝑢̂𝐶2,𝑔 + 𝑒̃𝑣 . 

Defined in this way, there may be country/economy level differences in the expected values 

of respondents based on the calibration. These are a source of uncertainty and can be viewed as adding 

variance to country/economy-level estimates. Given the assumption of a country/economy-level variability 

of estimates due to C1 and C2 calibrations, for the differences between estimates we find: 

Formula 11.19 

𝜃̃𝑣,𝐶1,𝑔 − 𝜃̃𝑣,𝐶2,𝑔 = 𝑢̂𝐶1,𝑔 − 𝑢̂𝐶2,𝑔, 

and the expectation can be estimated by: 

Formula 11.20 

𝐸(𝑢̂𝐶1,𝑔 − 𝑢̂𝐶2,𝑔) = 𝜇̃𝑔,𝐶1 − 𝜇̃𝑔,𝐶2 = ∆̂𝐶1,𝐶2,𝑔. 

Across countries/economies, the expected differences of country/economy means (𝜇̃) can be assumed 

to vanish, since the scales are transformed after calibrations to match distribution moments. That is, 

we may assume: 

Formula 11.21 

∑𝐸(𝑢̂𝐶1,𝑔 − 𝑢̂𝐶2,𝑔)

𝐺

𝑔=1

= 0 = ∑ ∆̂𝐶1,𝐶2,𝑔.

𝐺

𝑔=1

 



   33 

PISA 2022 TECHNICAL REPORT © OECD 2023 
  

The variance of the differences of country/economy means based on C1 and C2 calibrations can then 

be considered the linking error of the trend comparing the Y2 cycle means that were used to obtain 

calibration C2 estimates, and the Y1 cycle estimates. The linking error can be written as: 

Formula 11.22 

𝑉[∆̂𝐶1,𝐶2,𝑔] =
1

𝐺
∑(𝜇̃𝑔,𝐶1 − 𝜇̃𝑔,𝐶2)

2
.

𝐺

𝑔=1

 

The main characteristics of this approach can be summarised as follows: 

• Scale-level differences across countries/economies from adjacent-cycle IRT calibrations C1 and 

C2 are considered. 

• The effect of the variability of scale-level statistics between two calibrations is evaluated at the 

country/economy level. 

• Within-country/economy sampling variability is not targeted. 

• Sampling variance and measurement error are two separate variance components that are 

accounted for by plausible values and replicate weights-based variance estimation. 

The use of this variance component is analogous to that of previous cycle linking errors. The variance 

calculated in the formula (11.22) is a measure of uncertainty due to re-estimation of the model when using 

additional data from subsequent cycles, obtained with potentially different assessment designs, estimation 

methods, and underlying databases. To avoid the possibility that some data points (countries/economies) 

have excessive influence on the results, the robust Sn statistic was used, as it was in PISA 2015 and 2018. 

The Sn statistic was proposed by Rousseeuw and Croux (1993[2]) as a more efficient alternative to the 

scaled median absolute deviation from the median (1.4826*MAD) that is commonly used as a robust 

estimator of standard deviation. It is defined as: 

Formula 11.23 

𝑆𝑛 = 1.1926 ∗ 𝑚𝑒𝑑𝑖 (𝑚𝑒𝑑𝑗(|𝑥𝑖 − 𝑥𝑗|)). 

The differences defined above are plugged into the formula, that is, 𝑥𝑖=⁡∆̂𝐶1,𝐶2,𝑖 are used to calculate the 

linking error for comparisons of cycles Y1 and Y2 based on calibrations C1 (using only Y1 data) and C2 

(using Y2 data and additional data including Y1). The robust estimates of linking error between cycles 

by domain are presented in Chapter 14. 

The Sn statistic is available in SAS as well as the R package “robustbase.” See also https://cran.r-

project.org/web/packages/robustbase/robustbase.pdf. 
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Notes

 
1. More detail on the parallel MSAT Reading and Mathematics can be found in Chapter 2 of this 

Technical Report.  

2. With MSAT, testlets of different difficulty are assembled specifically for each stage (core, stage 1 

and stage 2), therefore position effects cannot easily be compared across stages. 
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3. Computed using senate weights so that all countries/economies contribute equally. 

4. Note that the parameterisations (𝜃𝑣 − 𝑏𝑖 + 𝑑𝑖𝑟) and (𝜃𝑣 − 𝑏𝑖𝑟), both⁡used⁡in⁡the⁡IRT⁡literature, are 

equivalent. However, the former has the advantage of using 𝑏𝑖 with both the 2PLM and GPCM, 

representing the overal item difficulty.  

5. In contrast, tests that are used to report individual-level results are concerned with accurately 

assessing the performance of each individual test-taker for the purposes of diagnosis, selection, 

or placement. This is achieved by administering a relatively large number of items to each 

individual, resulting in a negligible level of uncertainties associated with the point estimates. 

6. The contrast variables derived from the BQ responses can be found in the Annex B to this 

Technical Report 

7. As the mathematical properties of both plausible values and scores (the latter being obtained via 

a non-linear transformation of the former), plausible values will be used throughout the chapter for 

brevity.  

8. Note that RMSD are always larger than absolute MD values. Therefore, unless one wishes to set 

different thresholds on RMSD and MD to identify misfit, it is sufficient to use a single threshold on 

RMSD.  

9. Population modeling and plausible values are first produced on each domain’s IRT theta scale and 

then transformed to each domain’s reported PISA scale. All domains other than creative thinking 

use a linear transformation. Creative thinking uses a non-linear test characteristic curve 

transformation that results in plausible values that correspond to the student’s plausible number 

correct (NC) on a form made up of all the items in the creative thinking item pool.  
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Table 11.1. Language(s) of assessment, mode of assessment, and number of students and schools 
sampled for each country/economy 

Country Language(s) Test 

Mode 

Main 

Sample 

Financial 

Literacy Sample 

Total Schools 

Albania (ALB) Albanian CBA 6,156 
 

6,156 283 

Argentina (ARG) Spanish CBA 12,127 
 

12,127 460 

Australia (AUS) English CBA 13,521 
 

13,521 761 

Austria (AUT) German CBA 6,159 1,599 7,758 304 

Baku (Azerbaijan) (QAZ) Azeri, Russian CBA 7,720 
 

7,720 199 

Belgium* (BEL) French, German, Dutch CBA 8,286 1,189 9,475 285 

Brazil (BRA) Portuguese CBA 10,810 2,901 13,711 602 

Brunei Darussalam (BRN) English CBA 5,576 
 

5,576 54 

Bulgaria (BGR) Bulgarian CBA 6,118 1,605 7,723 203 

Cambodia (KHM) Khmer New PBA 5,279 
 

5,279 183 

Canada* (CAN) French, English CBA 23,386 4,203 27,589 885 

Chile (CHL) Spanish CBA 6,489 
 

6,489 231 

Chinese Taipei (TAP) Chinese CBA 5,896 
 

5,896 188 

Colombia (COL) Spanish CBA 7,804 
 

7,804 262 

Costa Rica (CRI) Spanish CBA 6,122 1,453 7,575 199 

Croatia (HRV) Croatian CBA 6,135 
 

6,135 180 

Cyprus (QCY) Greek, English CBA 6,517 
 

6,517 102 

Czech Republic (CZE) Czech CBA 8,460 2,213 10,673 430 

Denmark (DNK) Danish, Faroese CBA 6,224 1,578 7,802 349 

Dominican Republic (DOM) Spanish CBA 6,902 
 

6,902 254 

El Salvador (SLV) Spanish CBA 6,705 
 

6,705 290 

Estonia (EST) Russian, Estonian CBA 6,392 
 

6,392 196 

Finland (FIN) Finnish, Swedish CBA 10,256 
 

10,256 242 

France (FRA) French CBA 6,771 
 

6,771 283 

Georgia (GEO) Georgian, Azerbaijani, Russian CBA 6,583 
 

6,583 267 

Germany (DEU) German CBA 7,712 
 

7,712 259 

Greece (GRC) Greek CBA 6,545 
 

6,545 235 

Guatemala (GTM) Spanish New PBA 5,190 
 

5,190 290 

Hong Kong (China) (HKG) Chinese, English CBA 6,048 
 

6,048 168 

Hungary (HUN) Hungarian CBA 6,236 1,639 7,875 263 

Iceland (ISL) Icelandic CBA 3,367 
 

3,367 136 

Indonesia (IDN) Indonesian CBA 13,471 
 

13,471 412 

Ireland (IRL) Irish, English CBA 5,569 
 

5,569 170 

Israel (ISR) Hebrew, Arabic CBA 6,251 
 

6,251 193 

Italy (ITA) Italian, German CBA 10,564 2,789 13,353 345 

Jamaica (JAM) English CBA 3,956 
 

3,956 154 

Japan (JPN) Japanese CBA 5,760 
 

5,760 182 

Jordan (JOR) Arabic CBA 7,799 
 

7,799 260 

Kazakhstan (KAZ) Kazakh, Russian CBA 19,768 
 

19,768 571 

Korea (KOR) Korean CBA 6,454 
 

6,454 186 

Kosovo (KSV) Serbian, Albanian CBA 6,027 
 

6,027 229 

Latvia (LVA) Latvian, Russian CBA 5,394 
 

5,394 226 

Lithuania (LTU) Lithuanian, Russian, Polish CBA 7,257 
 

7,257 292 

Macao (China) (MAC) English, Chinese, Portuguese CBA 4,384 
 

4,384 46 

Malaysia (MYS) Malay, English CBA 7,069 1,818 8,887 199 

Malta (MLT) Maltese, English CBA 3,127 
 

3,127 46 

Mexico (MEX) Spanish CBA 6,288 
 

6,288 280 

Mongolia (MNG) Kazakh, Mongolian CBA 6,999 
 

6,999 195 

Montenegro (MNE) Montenegrin, Albanian CBA 5,800 
 

5,800 64 

Morocco (MAR) French, Arabic CBA 6,867 
 

6,867 178 

Netherlands (NLD) Dutch CBA 5,046 1,278 6,324 154 
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Country Language(s) Test 

Mode 

Main 

Sample 

Financial 

Literacy Sample 

Total Schools 

New Zealand (NZL) English CBA 4,830 
 

4,830 175 

North Macedonia (MKD) Macedonian, Albanian CBA 6,610 
 

6,610 111 

Norway (NOR) Nynorsk, Bokmål CBA 6,616 1,719 8,335 266 

Palestinian Authority (PSE) Arabic, English CBA 7,905 
 

7,905 273 

Panama (PAN) Spanish, English CBA 4,590 
 

4,590 227 

Paraguay (PRY) Spanish New PBA 5,087 
 

5,087 283 

Peru (PER) Spanish CBA 6,968 1,819 8,787 336 

Philippines (PHL) English CBA 7,193 
 

7,193 188 

Poland (POL) Polish CBA 6,048 1,574 7,622 246 

Portugal (PRT) Portuguese CBA 6,819 1,805 8,624 226 

Qatar (QAT) Arabic, English CBA 7,676 
 

7,676 229 

Republic of Moldova (MDA) Russian, Romanian CBA 6,235 
 

6,235 265 

Romania (ROU) Romanian, Hungarian CBA 7,364 
 

7,364 262 

Saudi Arabia (SAU) Arabic, English CBA 6,928 1,829 8,757 193 

Serbia (SRB) Hungarian, Serbian CBA 6,432 
 

6,432 185 

Singapore (SGP) English CBA 6,608 
 

6,608 165 

Slovak Republic (SVK) Slovak, Hungarian CBA 5,833 
 

5,833 289 

Slovenia (SVN) Slovenian CBA 6,752 
 

6,752 350 

Spain (ESP) Catalan, Galician, Basque, 

Spanish, Valencian 
CBA 30,920 1,682 32,602 983 

Sweden (SWE) Swedish, English CBA 6,079 
 

6,079 263 

Switzerland (CHE) German, French, Italian CBA 6,847 
 

6,847 262 

Thailand (THA) Thai CBA 8,507 
 

8,507 280 

Türkiye (TUR) Turkish CBA 7,250 
 

7,250 196 

Ukrainian regions (QUR) Ukranian CBA 4,005 
 

4,005 176 

United Arab Emirates (ARE) Arabic, English CBA 24,623 6,452 31,075 843 

United Kingdom (Excl. Scotland) (QUK) Welsh, English CBA 9,932 
 

9,932 345 

United Kingdom (Scotland) (QSC) English CBA 3,277 
 

3,277 120 

United States (USA) English CBA 4,602 1,121 5,723 160 

Uruguay (URY) Spanish CBA 6,747 
 

6,747 230 

Uzbekistan (UZB) Karakalpak, Uzbek, Russian CBA 7,293 
 

7,293 202 

Viet Nam (VNM) Vietnamese PBA 6,137 
 

6,137 180 

Note: Ukranian regions (QUR) - 18 out of 27 regions administered the assessment. 

*Denotes a country/economy for which the financial literacy domain was not fully sampled across the population; it is not a nationally-

representative sample. 
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Table 11.2. Example output for examining response distributions 

 

Table 11.3. Example table of item score category analysis and item flags summary 

 

Table 11.4. Flagging criteria for items in the item analyses 

  Criteria for flagging items 

min rbis/rpoly 0.3 

min P+ 0.2 

max P+ 0.9 

max Omit% 10 

max Offtask% 10 

max Not-Reached% 10 

BLOCK M01 (UNWEIGHTED)

Response Analysis

Which plan best represents the drawing o

1 NOT RCH OFF TSK OMIT        0        1 TOTAL R BIS = 0.6064

ITEM 1   N 1 14 74 2054 5466 7608 PT BIS = 0.4551

PERCENT 0.01 0.18 0.97 27.00 71.85 100.00 P+ = 0.7185

CM033Q01S MEAN SCORE 7.00 5.00 1.22 3.59 7.31 6.25 DELTA = 10.69

STD. DEV. 0.00 3.09 1.87 2.92 3.49 3.75

MAC RESP WT 0.00 0.00 0.00 0.00 1.00 ITEM WT = 1.00

Which is the third fastest time?

2 NOT RCH OFF TSK OMIT        0        1 TOTAL R BIS = 0.6213

ITEM 2   N 8 0 98 2204 5299 7601 PT BIS = 0.4722

PERCENT 0.11 0.00 1.29 29.00 69.71 100.00 P+ = 0.6971

CM474Q01S MEAN SCORE 1.25 0.00 1.38 3.66 7.42 6.25 DELTA = 10.94

STD. DEV. 1.48 0.00 1.66 3.06 3.14 3.75

MAC RESP WT 0.00 0.00 0.00 0.00 1.00 ITEM WT = 1.00

How many people (boys and girls combined

3 NOT RCH OFF TSK OMIT       00       11       12       13       21 TOTAL R BIS = 0.8431

ITEM 3   N 20 1 1139 1639 335 530 201 3744 7589 PT BIS = 0.7118

PERCENT 0.26 0.01 15.04 15.01 4.41 6.98 2.65 49.33 100.00 P+ = 0.5636

DM155Q02C MEAN SCORE 1.00 3.00 2.58 2.58 5.40 5.81 6.33 8.81 6.26 DELTA = 12.36

STD. DEV. 0.55 0.00 2.02 2.02 2.48 2.69 2.71 2.84 3.74

HUM RESP WT 0.00 0.00 0.00 0.00 0.50 0.50 0.50 1.00 ITEM WT = 2.00

BLOCK M01 (UNWEIGHTED)

Item Score Category Analysis (Partial credit model)

Category N Pct. At Pct. Below Mean Std. Dev. Biserial B *

ITEM 1 0 2142 28.15 0.00 3.52 2.93

CM033Q01S 1 5466 71.85 28.15 7.31 3.49 0.6064 -0.9529

ITEM 2 0 2302 30.29 0.00 3.57 3.05

CM474Q01S 1 5299 69.71 30.29 7.42 3.14 0.6213 -0.8303

ITEM 3 0 2779 36.62 0.00 3.01 2.31

DM155Q02C 1 1066 14.05 36.62 5.78 2.65 0.6114 0.3033

2 3744 49.33 50.67 8.81 2.84 0.5728 -0.8367

BLOCK M01 (UNWEIGHTED)

Item Analysis Flag Summary

Item ID Num Resp Type R-BIS P-PLUS % NOTRCH % OFFTSK % OMIT % MISS Flags

CM033Q01 2 SCR 0.6064 0.7185 0.01 0.18 0.97 1.17 ......

CM474Q01 2 SCR 0.6213 0.6971 0.11 0.00 1.29 1.39 ......

DM155Q02 5 ECR 0.8431 0.5636 0.26 0.01 15.01 15.25 ...O..
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Table 11.5. Percentage of response time outliers by domain 

DOMAIN Reading Science Mathematics Financial Literacy Creative Thinking 

Number of Clusters/testlets 30 MSAT testlets 6 144 MSAT testlets 2 5 

Number of Outliers 0.68% 1.21% 0.95% 0.53% 0.76% 

Note: Statistics for mathematics, reading, science, and creative thinking are based on the main sample; statistics for financial literacy are based 

on the financial literacy sample. 

Table 11.6a. Descriptive statistics for testlet or cluster response time (in minutes) 

DOMAIN N MIN Q1 MEDIAN Q3 MAX MEAN SD 

Math Testlet 1 543,174 0.04 11.86 16.32 21.31 33.94 16.64 6.80 

Math Testlet 2 556,894 0.02 9.86 14.02 17.97 33.94 13.88 5.86 

Math Testlet 3 541,703 0.01 6.48 10.17 13.63 33.90 10.16 5.05 

Reading Testlet 1 238,303 0.04 9.90 13.64 17.91 31.85 14.04 6.24 

Reading Testlet 2 241,238 0.05 13.11 17.67 22.04 37.78 17.44 6.73 

Reading Testlet 3 232,806 0.00 6.35 10.44 14.04 37.61 10.29 5.29 

Science 236,767 0.03 15.49 21.35 27.47 48.49 21.82 9.50 

Financial Literacy 41,682 0.03 15.87 21.90 30.40 53.79 23.22 10.88 

Creative Thinking 143,429 0.07 13.60 18.84 24.47 43.21 19.25 8.25 

Note: Statistics for mathematics, reading, science, and creative thinking are based on the main sample; statistics for financial literacy are based 

on the financial literacy sample. 

Table 11.6b. Descriptive statistics for domain stage response time (in minutes) 

DOMAIN N MIN Q1 MEDIAN Q3 MAX MEAN SD 

Mathematics Linear 136,377 0.04 32.23 43.07 50.43 91.06 40.27 12.99 

Mathematics MSAT 406,552 0.04 32.52 43.49 50.71 93.85 40.58 12.97 

Reading Design A 178,444 0.04 34.91 44.72 50.41 94.60 41.45 12.48 

Reading Design B 59,183 0.09 35.02 44.86 50.34 94.06 41.41 12.57 

Reading Design A (with RF) 173,578 0.04 34.92 44.76 50.45 94.60 41.46 12.48 

Reading Design B (with RF) 57,601 0.09 35.07 44.92 50.38 94.06 41.45 12.57 

Science 236,767 0.05 36.17 46.65 53.70 101.34 43.73 12.88 

Financial Literacy 41,682 0.11 40.92 49.10 53.32 104.69 45.84 11.57 

Creative Thinking 143,429 0.06 30.08 40.35 48.47 93.46 38.52 12.61 

Note: Statistics for mathematics, reading, science, and creative thinking are based on the main sample; statistics for financial literacy are based 

on the financial literacy sample. 

Tables 11.7a – 11.7d. Median domain response time (in minutes) by proficiency level 

Refer to Chapter_11_Tables_xlsx to view Tables 11.7a to 11.7d online. 

Table 11.8a. Median response time (in minutes) by cluster position in the CBA for non-adaptive 
domains 

DOMAIN Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1 

Science 29.69 18.08 23.87 17.77 -11.91 

Financial Literacy 32.97 16.82 27.38 17.55 -15.42 

Creative Thinking 23.81 17.38 20.43 15.98 -7.83 

Note: Excludes cluster outliers. 
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Table 11.8b. Median response time (in minutes) by assessment hour in the CBA for all domains 

DOMAIN 1st Hour 2nd Hour 2nd Hour - 1st Hour 

Math Linear 45.65 40.03 -5.61 

Math MSAT 46.05 40.43 -5.62 

Reading Core Items 15.17 12.29 -2.89 

Reading Stage 1 and 2  29.44 28.08 -1.37 

Reading MSAT 46.75 42.12 -4.64 

Science 49.9 42.98 -6.92 

Financial Literacy 50.46 46.92 -3.54 

Creative Thinking 42.96 37.61 -5.35 

Note: Excludes cluster outliers. 

Table 11.9a. Average proportion correct (P+) by cluster position in the CBA for non-adaptive 
domains 

DOMAIN Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1 

Science 0.452 0.399 0.423 0.384 -0.068 

Financial Literacy 0.510 0.434 0.479 0.422 -0.089 

Creative Thinking 0.479 0.453 0.456 0.428 -0.051 

Table 11.9b. Average proportion correct (P+) by assessment hour in the CBA for all domains 

DOMAIN 1st Hour 2nd Hour 2nd Hour - 1st Hour 

Math Linear - trend* 0.376 0.357 -0.019 

Math Linear - new* 0.388 0.375 -0.013 

Math MSAT - trend* 0.376 0.356 -0.02 

Math MSAT - new* 0.397 0.385 -0.012 

Reading Core Items 0.569 0.524 -0.044 

Reading Stage 1 and 2  0.495 0.474 -0.021 

Creative Thinking 0.466 0.442 -0.024 

Table 11.10a. Average proportion of omitted responses by cluster position in the CBA for non-
adaptive domains 

DOMAIN Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1 

Science 0.027 0.049 0.042 0.06 0.033 

Financial Literacy 0.027 0.063 0.041 0.073 0.045 

Creative Thinking 0.042 0.041 0.054 0.052 0.009 

Table 1111.10b. Average omission rate by assessment hour in the CBA for all domains 

DOMAIN 1st Hour 2nd Hour 2nd Hour - 1st Hour 

Math Linear - trend* 0.08 0.098 0.017 

Math Linerar - new* 0.067 0.074 0.007 

Math MSAT - trend* 0.071 0.09 0.019 

Math MSAT - new* 0.048 0.058 0.01 

Reading Core Items 0.036 0.052 0.015 

Reading Stage 1 and 2  0.063 0.078 0.015 

Creative Thinking 0.041 0.053 0.012 
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Table 11.11a. Average proportion correct (P+) by cluster position in new PBA 

DOMAIN Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1 

Reading 0.623 0.614 0.601 0.583 -0.040 

Science 0.480 0.481 0.468 0.462 -0.018 

Mathematics 0.387 0.385 0.373 0.356 -0.029 

Table 11.11b. Average proportion of omitted responses by cluster position in new PBA 

DOMAIN Position 1 Position 2 Position 3 Position 4 Position 4 - Position 1 

Reading 0.046 0.049 0.055 0.067 0.022 

Science 0.061 0.055 0.067 0.074 0.013 

Mathematics 0.095 0.090 0.095 0.110 0.015 

Table 11.12. Example for use of plausible values for partitioning the error 

Plausible 

value 

0-10 books at 

home 

11-25 books at 

home 

26-100 books at 

home 

101-200 books at 

home 

201-500 books at 

home 

500+ books at 

home 

Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) Mean (s.e.) 

1 429.16 3.51 473.20 3.19 512.84 2.32 538.82 2.74 559.98 2.93 547.44 4.79 

2 429.91 3.38 474.43 3.24 512.68 2.42 539.22 2.63 559.50 3.09 546.99 4.75 

3 429.99 3.57 474.13 3.22 513.51 2.40 537.97 2.65 561.92 2.94 546.52 4.44 

4 429.34 3.39 475.64 3.35 513.31 2.41 538.97 2.45 559.42 3.01 545.47 4.97 

5 429.87 3.42 473.92 3.24 512.92 2.42 539.68 2.54 559.51 3.04 546.58 4.75 

6 429.04 3.25 474.58 3.34 513.29 2.43 536.60 2.59 562.07 3.05 546.57 4.66 

7 429.35 3.54 474.59 3.35 513.04 2.40 539.21 2.67 559.83 3.05 546.16 4.94 

8 429.21 3.41 475.42 3.17 512.85 2.51 541.71 2.60 560.24 3.05 546.25 4.71 

9 428.76 3.42 473.17 3.10 512.36 2.36 537.66 2.92 559.86 3.19 547.96 4.64 

10 429.50 3.43 473.77 3.04 512.25 2.35 538.45 2.64 560.68 3.04 547.98 4.90 

 

Estimate 429.41 474.29 512.91 538.83 560.30 546.79 

Sampling 

Error 

3.43 3.23 2.40 2.65 3.04 4.76 

Measurement 

Error 
0.42 0.87 0.43 1.42 1.02 0.85 

Standard 

Error 
3.46 3.34 2.44 3.00 3.21 4.83 
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Table 11.13. Number of trend (linking) items and new items by domain and mode of assessment 

  CBA Trend CBA New CBA Total PBA New PBA 

Mathematics 74 159* 233 71 64 

Reading 196* 
 

196 87 66 

Science 115 
 

115 85 66 

Reading Fluency 65 
 

65 
 

79 

Financial Literacy 40* 5 45 
  

Creative Thinking   32* 32     

Note: *Dropped items: CMA112Q02, CR547Q07S, DF082Q01C, and DT520Q01C, DT560Q01C, DT560Q02C, DT450Q01C, DT450Q02C and 

DT450Q03C 

Table 11.14. Unweighted calibration sample size by domain and mode of assessment 

  CBA PBA and New PBA 

Mathematics 561,556 15,768 

Reading 245,800 13,401 

Science 245,715 13,209 

Financial Literacy 42,068 
 

Creative Thinking 144,492   

Table 11.15. Model selection criteria for the unidimensional and the two-dimensional IRT models 
for trend and new mathematics items in the main survey 

MODEL # of Parameters AIC BIC Log Penalty Improvement 

Independence NA NA NA 0.668 NA 

Unidimensional 751 11861255 11869412 0.5794 99.8% 

Two-dimensional 1002 11812371 11823248 0.5792 100.0% 

Note: Log penalty (Gilula & Haberman, 1994) provides the negative expected log likelihood per observation, the % Improvement compares 

the log-penalties of the models relative to the difference between most restrictive and most general model. 

Table 11.16. Distribution of the items to the mathematics subscales 

Content Scale Process Scale 

Subscales Trend New Subscales Trend New 

Change and Relationships 17 38 Employing Mathematical Concepts, Facts and Procedures 24 51 

Quantity 21 55 Formulating Situations Mathematically 11 37 

Space and Shape 17 26 Interpreting, Applying and Evaluating Mathematical Outcomes 10 47 

Uncertainty and Data 19 41 Reasoning 29 25 

Total: 74 160 Total: 74 160 

Note: CMA112Q02S (Content Scale - Quantity; Process Scale - Reasoning) was included in the counts above but was ultimately dropped during 

scaling for all countries. 
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This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and 

arguments employed herein do not necessarily reflect the official views of the Member countries of the OECD. 

Note by the Republic of Türkiye   

The information in this document with reference to “Cyprus” relates to the southern part of the Island. There is no 

single authority representing both Turkish and Greek Cypriot people on the Island. Türkiye recognises the Turkish 

Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United 

Nations, Türkiye shall preserve its position concerning the “Cyprus issue”. 

Note by all the European Union Member States of the OECD and the European Union   

The Republic of Cyprus is recognised by all members of the United Nations with the exception of Türkiye. The 

information in this document relates to the area under the effective control of the Government of the Republic of 

Cyprus. 

The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of 

such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements 

in the West Bank under the terms of international law. 

The use of this work, whether digital or print, is governed by the Terms and Conditions to be found at: 

https://www.oecd.org/termsandconditions 
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